| 研究生: |
任之凡 Ren, Zhi-Fan |
|---|---|
| 論文名稱: |
探討溫度和剪切效應對纖維素奈米晶體於深共熔溶劑中的影響 Investigating the effect of temperature and shear on the suspension of cellulose nanocrystals in deep eutectic solvents |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 凝膠 、3D列印 、深共熔溶劑 、纖維素奈米晶體 、溫度和剪切效應 、流變 |
| 外文關鍵詞: | Gel, 3D printing, Deep eutectic solvents (DESs), Cellulose nanocrystals (CNCs), Thermal and shear-induced, Rheology |
| 相關次數: | 點閱:45 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著3D列印技術的蓬勃發展,對於列印材料的需求也與日俱增。水凝膠為目前最常使用的3D列印材料之一,然而其較易受到環境溫度和濕度的影響,穩定性及耐久度稍嫌不足。為克服此劣勢,我們採用了深共熔溶劑來取代水作為新媒介,其具有低揮發性和較大的工作溫度範圍,有望能夠解決水容易蒸發之問題。
在3D列印材料的開發當中,流變性質的調控也至關重要。纖維素奈米晶體被廣泛用作為流變塑形劑,用以調控材料之流變性質。它能使材料在聚合(固化)之前便形成具一定機械強度之凝膠,有助於保持列印過程中形狀的完整性。此外,纖維素奈米晶體具有高度縱橫比之性質,在列印過程中,能夠順著剪切應力的方向排列,進而降低流動的困難度,呈現剪切稀化的特性,利於確保列印的連續和穩定性。
然而,目前較少研究採用深共熔溶劑搭配纖維素奈米晶體開發3D列印材料,因此對材料流變性質的控制和分散製程的選擇仍然是一個重要的議題。為此,我們開發了一種新型的分散製程,透過加熱和剪切作用促進纖維素奈米晶體於深共熔溶劑中均勻分散。這種方法能在較低之流變塑形劑添加含量下,便促使高機械強度凝膠的形成,為後續單體的添加提供更大的空間和自由度。此外,我們也追蹤及記錄了一系列製程參數對材料流變性質和分散行為的影響,以實現更精準、便利地控制材料之流變特性,從而促進3D列印技術的應用。我們也希望透過本研究,為後續深共熔溶劑/纖維素奈米晶體凝膠材料的開發提供一些參考和幫助。
In recent years, with the flourishing development of 3D printing technology, the demand for printing materials has been increasing rapidly. Hydrogels are among the most commonly used materials for 3D printing. However, they are susceptible to environmental temperature and humidity, resulting in limited stability and durability. To overcome this issue, we have adopted deep eutectic solvents (DESs) as a replacement for water, serving as a novel dispersed medium. These solvents possess the advantage of low volatility and a wider operating temperature range, which provide hope for resolving the problem of water evaporation.
The precise control of rheological properties is crucial in the development of 3D printing materials. Cellulose nanocrystals (CNCs) have emerged as widely used rheological modifiers for modulating the rheological behavior of materials. They facilitate pre-gel formation with superior mechanical strength prior to polymerization (solidification), ensuring shape integrity during the printing process. Additionally, the distinctive high aspect ratio of CNCs enables them to align with the shear direction during the printing process, alleviating flow difficulties and exhibiting shear thinning behavior to promote continuous and stable extrusion.
However, research on integrating DESs and CNCs for developing 3D printable materials remains limited. Consequently, precise control of materials' rheological properties and selecting suitable dispersion processes continue to pose significant challenges. In light of this, we have devised a novel dispersion process employing a thermal and a shear treatment to facilitate the uniform dispersion of CNCs within DESs. This approach enables the formation of high-strength pre-gel at lower concentrations of rheological modifiers, providing ample space and flexibility for subsequent monomer incorporation. Furthermore, we have investigated the effect of various process parameters on rheological properties and dispersion behavior, aiming to achieve precise and convenient control over the rheological behavior of materials, thereby advancing the application of 3D printing. Our research strives to provide some guidelines and assistance for future development in DESs/CNCs materials.
(1) Lee, Y.; Song, W. J.; Sun, J. Y. Hydrogel Soft Robotics. Mater. Today Phys. 2020, 15.
(2) Jiao, D.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Acc. Chem. Res. 2022, 55 (11), 1533-1545.
(3) Wang, H.; Wang, Z.; Yang, J.; Xu, C.; Zhang, Q.; Peng, Z. Ionic Gels and Their Applications in Stretchable Electronics. Macromol. Rapid Commun. 2018, e1800246.
(4) Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-based Gel Polymer Electrolytes in Flexible Solid-State Supercapacitors: Opportunities and Challenges. J. Storage Mater. 2020, 27.
(5) Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252-267.
(6) Chelu, M.; Musuc, A. M. Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels 2023, 9 (2).
(7) Innocenzi, P. Understanding Sol–Gel Transition through a Picture. A short tutorial. J. Sol-Gel Sci. Technol. 2020, 94 (3), 544-550.
(8) Nishinari, K. Some Thoughts on The Definition of a Gel. In Prog. Colloid Polym. Sci., Vol. 136; Springer Berlin Heidelberg, 2009; 87-94.
(9) Bhattacharya, S.; Shunmugam, R. Polymer Based Gels and Their Applications in Remediation of Dyes From Textile Effluents. J. Macromol. Sci. Part A Pure Appl. Chem. 2020, 57 (12), 906-926.
(10) Rogovina, L. Z.; Vasil’ev, V. G.; Braudo, E. E. Definition of the Concept of Polymer Gel. Polym. Sci. Ser. C 2008, 50 (1), 85-92.
(11) Wang, Y. J.; Li, C. Y.; Wang, Z. J.; Zhao, Y.; Chen, L.; Wu, Z. L.; Zheng, Q. Hydrogen Bond-reinforced Double-Network Hydrogels with Ultrahigh Elastic Modulus and Shape Memory Property. J. Polym. Sci., Part B: Polym. Phys. 2018, 56 (19), 1281-1286.
(12) Kamiyama, Y. Highly Stretchable and Self Healable Polymer Gels from Physical Entanglements of Ultrahigh–Molecular Weight Polymers. Sci. Adv. 2022, 8 (42).
(13) Wang, K.; Zhang, X.; Li, C.; Sun, X.; Meng, Q.; Ma, Y.; Wei, Z. Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Adv. Mater. 2015, 27 (45), 7451-7457.
(14) Lu, P. J.; Weitz, D. A. Colloidal Particles: Crystals, Glasses, and Gels. Annu. Rev. Condens. Matter Phys. 2013, 4 (1), 217-233.
(15) Joshi, Y. M. Dynamics of Colloidal Glasses and Gels. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 181-202.
(16) Stokes, J. R.; Frith, W. J. Rheology of Gelling and Yielding Soft Matter Systems. Soft Matter 2008, 4 (6), 1133-1140.
(17) Sciortino, F.; Buldyrev, S. V.; De Michele, C.; Foffi, G.; Ghofraniha, N.; La Nave, E.; Moreno, A. M., S.; Saika-Voivod, I.; Tartaglia, P.; Zaccarelli, E. Routes to Colloidal Gel Formation. Comput. Phys. Commun. 2005, 169 (1-3), 166-171.
(18) Xu, Y.; Atrens, A. D.; Stokes, J. R. "Liquid, Gel and Soft Glass" Phase Transitions and Rheology of Nanocrystalline Cellulose Suspensions as a Function of Concentration and Salinity. Soft Matter 2018, 14 (10), 1953-1963.
(19) Solomon, M. J.; Spicer, P. T. Microstructural Regimes of Colloidal Rod Suspensions, Gels, and Glasses. Soft Matter 2010, 6 (7), 1391-1400.
(20) Zhu, C.; Pascall, A. J.; Dudukovic, N.; Worsley, M. A.; Kuntz, J. D.; Duoss, E. B.; Spadaccini, C. M. Colloidal Materials for 3D Printing. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 17-42.
(21) Tsurusawa, H.; Leocmach, M.; Russo, J.; Tanaka, H. Direct link between Mechanical Stability in Gels and Percolation of Isostatic Particles. Sci. Adv. 2019, 5 (5).
(22) Sögaard, C.; Hagström, M.; Abbas, Z. Temperature and Particle-size Effects on The Formation of Silica Gels from Silica Sols. Silicon 2022, 15 (8), 3441-3451.
(23) Simonsson, I.; Sögaard, C.; Rambaran, M.; Abbas, Z. The Specific Co-Ion Effect on Gelling and Surface Charging of Silica Nanoparticles: Speculation or Reality? Colloids Surf., A 2018, 559, 334-341.
(24) van der Linden, M.; Conchuir, B. O.; Spigone, E.; Niranjan, A.; Zaccone, A.; Cicuta, P. Microscopic Origin of the Hofmeister Effect in Gelation Kinetics of Colloidal Silica. J. Phys. Chem. Lett. 2015, 6 (15), 2881-2887.
(25) Lewis, L.; Derakhshandeh, M.; Hatzikiriakos, S. G.; Hamad, W. Y.; MacLachlan, M. J. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules 2016, 17 (8), 2747-2754.
(26) Saha, S.; Hemraz, U. D.; Boluk, Y. The Effects of High Pressure and High Temperature in Semidilute Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules 2020, 21 (2), 1031-1035.
(27) Xu, Y.; Atrens, A.; Stokes, J. R. A Review of Nanocrystalline Cellulose Suspensions: Rheology, Liquid Crystal Ordering and Colloidal Phase Behaviour. Adv. Colloid Interface Sci. 2020, 275, 102076.
(28) Xu, Y.; Atrens, A. D.; Stokes, J. R. Liquid Crystal Hydroglass Formed Via Phase Separation of Nanocellulose Colloidal Rods. Soft Matter 2019, 15 (8), 1716-1720.
(29) Xu, Y.; Atrens, A. D.; Stokes, J. R. Rheology and Microstructure of Aqueous Suspensions of Nanocrystalline Cellulose Rods. J. Colloid Interface Sci. 2017, 496, 130-140.
(30) Xu, Y.; Atrens, A.; Stokes, J. R. Structure and Rheology of Liquid Crystal Hydroglass Formed in Aqueous Nanocrystalline Cellulose Suspensions. J. Colloid Interface Sci. 2019, 555, 702-713.
(31) Dorris, A.; Gray, D. G. Gelation of Cellulose Nanocrystal Suspensions in Glycerol. Cellulose 2012, 19 (3), 687-694.
(32) Qin, Y.; Chang, R.; Ge, S.; Xiong, L.; Sun, Q. Synergistic Effect of Glycerol and Ionic Strength on The Rheological Behavior of Cellulose Nanocrystals Suspension System. Int. J. Biol. Macromol. 2017, 102, 1073-1082.
(33) Tardy, B. L.; Mattos, B. D.; Otoni, C. G.; Beaumont, M.; Majoinen, J.; Kamarainen, T.; Rojas, O. J. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem. Rev. 2021, 121 (22), 14088-14188.
(34) Guo., M.; Jiang, M.; Pispas, S.; Yu, W.; Zhou, C. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and R-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction. Macromolecules 2008, 41 (24), 9744-9749.
(35) Lai, P. C.; Yu, S. S. Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Polymers (Basel) 2021, 13 (5).
(36) Lai, C. W.; Yu, S. S. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12 (30), 34235-34244.
(37) Lai, P.-C.; Ren, Z.-F.; Yu, S.-S. Thermally Induced Gelation of Cellulose Nanocrystals in Deep Eutectic Solvents for 3D Printable and Self-Healable Ionogels. ACS Appl. Polym. Mater. 2022, 4 (12), 9221-9230.
(38) Saadi, M. A. S. R.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34 (28), e2108855.
(39) Khosravani, M. R.; Reinicke, T. 3D-Printed Sensors: Current Progress and Future Challenges. Sens. Actuators, A 2020, 305.
(40) Li, L.; Lin, Q.; Tang, M.; Duncan, A. J. E.; Ke, C. Advanced Polymer Designs for Direct-Ink-Write 3D Printing. Chemistry 2019, 25 (46), 10768-10781.
(41) Lee, J.-Y.; An, J.; Chua, C. K. Fundamentals and Applications of 3D Printing for Novel Materials. Appl. Mater. Today 2017, 7, 120-133.
(42) Lizundia, E.; Puglia, D.; Nguyen, T.-D.; Armentano, I. Cellulose Nanocrystal Based Multifunctional Nanohybrids. Prog. Mater Sci. 2020, 112.
(43) Kadar, R.; Spirk, S.; Nypelo, T. Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy. ACS Nano 2021, 15 (5), 7931-7945.
(44) Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Hyun Park, J.; Scalia, G.; Bergström, L. Cellulose Nanocrystal-Based Materials: from Liquid Crystal Self-Assembly and Glass Formation to Multifunctional Thin Films. NPG Asia Mater. 2014, 6 (1), e80-e80.
(45) Mali, P.; Sherje, A. P. Cellulose Nanocrystals: Fundamentals and Biomedical Applications. Carbohydr. Polym. 2022, 275, 118668.
(46) Rana, A. K.; Frollini, E.; Thakur, V. K. Cellulose Nanocrystals: Pretreatments, Preparation Strategies, and Surface Functionalization. Int. J. Biol. Macromol. 2021, 182, 1554-1581.
(47) George, J.; Sabapathi, S. N. Cellulose Nanocrystals: Synthesis, Functional Poperties, and Applications. Nanotechnol. Sci. Appl. 2015, 8, 45-54.
(48) Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40 (7), 3941-3994.
(49) Tang, J.; Sisler, J.; Grishkewich, N.; Tam, K. C. Functionalization of Cellulose Nanocrystals for Advanced Applications. J. Colloid Interface Sci. 2017, 494, 397-409.
(50) Prathapan, R.; Tabor, R. F.; Garnier, G.; Hu, J. Recent Progress in Cellulose Nanocrystal Alignment and Its Applications. ACS Appl. Bio Mater. 2020, 3 (4), 1828-1844.
(51) Trache, D.; Hussin, M. H.; Haafiz, M. K.; Thakur, V. K. Recent Progress in Cellulose Nanocrystals: Sources and Production. Nanoscale 2017, 9 (5), 1763-1786.
(52) Ramires, E. C.; Megiatto Jr, J. D.; Dufresne, A.; Frollini, E. Cellulose Nanocrystals versus Microcrystalline Cellulose as Reinforcement of Lignopolyurethane Matrix. Fibers 2020, 8 (4).
(53) Sun, C.; Zhu, D.; Jia, H.; Yang, C.; Zheng, Z.; Wang, X. Bio-Based Visual Optical Pressure-Responsive Sensor. Carbohydr. Polym. 2021, 260, 117823.
(54) He, Y. D.; Zhang, Z. L.; Xue, J.; Wang, X. H.; Song, F.; Wang, X. L.; Zhu, L. L.; Wang, Y. Z. Biomimetic Optical Cellulose Nanocrystal Films with Controllable Iridescent Color and Environmental Stimuli-Responsive Chromism. ACS Appl. Mater. Interfaces 2018, 10 (6), 5805-5811.
(55) Fernandes, S. N.; Lopes, L. F.; Godinho, M. H. Recent Advances in The Manipulation of Circularly Polarised Light with Cellulose Nanocrystal Films. Curr. Opin. Solid State Mater. Sci. 2019, 23 (2), 63-73.
(56) Cheng, Z.; Ye, H.; Cheng, F.; Li, H.; Ma, Y.; Zhang, Q.; Natan, A.; Mukhopadhyay, A.; Jiao, Y.; Li, Y.; et al. Tuning Chiral Nematic Pitch of Bioresourced Photonic Films via Coupling Organic Acid Hydrolysis. Adv. Mater. Interfaces 2019, 6 (7).
(57) Zhao, T. H.; Parker, R. M.; Williams, C. A.; Lim, K. T.; Frka‐Petesic, B.; Vignolini, S. Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays. Adv. Funct. Mater. 2018, 29 (21).
(58) Fourmann, O.; Hausmann, M. K.; Neels, A.; Schubert, M.; Nystrom, G.; Zimmermann, T.; Siqueira, G. 3D Printing of Shape-Morphing and Antibacterial Anisotropic Nanocellulose Hydrogels. Carbohydr. Polym. 2021, 259, 117716.
(59) Cheng, Q.; Guo, J.; Cao, X.; Chang, C. The Digital Printing of Chromatic Pattern with A Single Cellulose Nanocrystal Ink. Chem. Eng. J. 2022, 439.
(60) Vorobiov, V. K.; Sokolova, M. P.; Bobrova, N. V.; Elokhovsky, V. Y.; Smirnov, M. A. Rheological Properties and 3D-Printability of Cellulose Nanocrystals/Deep Eutectic Solvent Electroactive Ion Gels. Carbohydr. Polym. 2022, 290, 119475.
(61) El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19 (4), 3397-3408.
(62) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-11082.
(63) Wang, J.; Zhang, S.; Ma, Z.; Yan, L. Deep Eutectic Solvents Eutectogels: Progress and Challenges. GreenChE 2021, 2 (4), 359-367.
(64) Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep Eutectic Solvents vs Ionic Liquids: Similarities and Differences. Microchem. J. 2020, 159.
(65) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121 (3), 1232-1285.
(66) Wazeer, I.; Hayyan, M.; Hadj-Kali, M. K. Deep Eutectic Solvents: Designer Fluids for Chemical Processes. J. Chem. Technol. Biotechnol. 2018, 93 (4), 945-958.
(67) Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, (1), 70-71.
(68) Liu, Y.; Guo, B.; Xia, Q.; Meng, J.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Efficient Cleavage of Strong Hydrogen Bonds in Cotton by Deep Eutectic Solvents and Facile Fabrication of Cellulose Nanocrystals in High Yields. ACS Sustainable Chem. Eng. 2017, 5 (9), 7623-7631.
(69) Li, C.-Y.; Yu, S.-S. Efficient Visible-Light-Driven RAFT Polymerization Mediated by Deep Eutectic Solvents under an Open-to-Air Environment. Macromolecules 2021, 54 (21), 9825-9836.
(70) Li, R. a.; Fan, T.; Chen, G.; Xie, H.; Su, B.; He, M. Highly Transparent, Self-Healing Conductive Elastomers Enabled by Synergistic Hydrogen Bonding Interactions. Chem. Eng. J. 2020, 393.
(71) Wang, J.; Ma, Z.; Wang, Y.; Shao, J.; Yan, L. Ultra-Stretchable, Self-Healing, Conductive, and Transparent PAA/DES Ionic Gel. Macromol. Rapid Commun. 2021, 42 (2), e2000445.
(72) Pignon, F.; Challamel, M.; De Geyer, A.; Elchamaa, M.; Semeraro, E. F.; Hengl, N.; Jean, B.; Putaux, J. L.; Gicquel, E.; Bras, J.; et al. Breakdown and Buildup Mechanisms of Cellulose Nanocrystal Suspensions Under Shear and Upon Relaxation Probed by SAXS and SALS. Carbohydr Polym 2021, 260, 117751.
(73) Haywood, A. D.; Weigandt, K. M.; Saha, P.; Noor, M.; Green, M. J.; Davis, V. A. New Insights into The Flow and Microstructural Relaxation Behavior of Biphasic Cellulose Nanocrystal Dispersions from RheoSANS. Soft Matter 2017, 13 (45), 8451-8462.