簡易檢索 / 詳目顯示

研究生: 王來彥
Wang, Lai-Yen
論文名稱: 聚己二酸二乙酯和聚己二酸二丁酯與不定型高分子摻合體之多晶態與球晶型態
Polymorphism and Spherulite Morphologies in Poly(ethylene adipate) and Blends of Poly(1,4-butylene adipate) with Amorphous Polymers
指導教授: 吳逸謨
Woo, E. M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 聚己二酸二丁酯多晶態球晶型態環狀消光環
外文關鍵詞: poly(butylene adipate), polymorphism, spherulite morphology, ring band
相關次數: 點閱:186下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微分掃描熱卡計(DSC)、偏光顯微鏡(POM)、傅立葉轉換紅外光譜儀(FT-IR)、廣角X光繞射儀(WAXD)以及小角度X光散射儀(SAXS)來探討聚己二酸二丁酯(Poly(1,4-butylene adipate), PBA)與不定型高分子(Poly(benzyl methacrylate), PBzMA、Poly(phenyl methacrylate), PPhMA)摻合後,個別摻合系統的相容性、結晶動力、多晶態和球晶型態。另一方面,在PEA環狀球晶的探討上,將利用POM、DSC、 FT-IR、WAXD、液態核磁共振儀(liquid-state NMR)和掃描式電子顯微鏡(SEM)來做分析。
    由PBA/PBzMA和PBA/PPhMA於各組成下皆呈現單一玻璃轉移溫度,且在OM觀察下均呈現均相相型態的結果,可知此兩摻合系統皆為相容系統。而在球晶成長速率方面,相較於neat PBA,加入不定型高分子的摻合系統,球晶成長速率皆會受到抑制,並會隨著不定型高分子含量增加而遞減,其中PPhMA的Tg和分子量皆比PBzMA來的高,所以使得球晶成長速率下降程度也較大。此外,由於晶體成長速率會受到不定型高分子的加入而下降,因此使PBA晶體延遲形成動力學穩定之form,而較喜愛形成熱力學穩定之form。
    在球晶型態上,PBA/PBzMA摻合系統中,PBzMA的加入會使得form PBA由環狀消光環轉變為ringless的型態,然而對於單一晶態的球晶(form和form),其球晶型態卻不會有太大影響。而在PBA/PPhMA摻合系統中則可發現PPhMA的加入同樣會使得form PBA由環狀消光環轉變為ringless的結構,不同的是PPhMA還會使form PBA的球晶型態由葉片狀結構轉變為zig-zag結構,並且環距會隨著PPhMA的含量增加而減小。由這兩個摻合系統的結果可以得知,環狀消光環的形成與晶態並無絕對關係。
    在第二部分,本研究利用蒸氣蝕刻和塊材斷裂面之觀察來探討聚己二酸二乙酯(Poly(ethylene adipate), PEA)環狀消光環之形成機制。然而在蝕刻方面,由於蝕刻液會和PEA產生反應,因此無法由此部分獲得有關環狀消光環結構的資訊。另外在塊材斷裂面之觀察上,可發現PEA環狀消光環的內部結構並非是由lamellar twisting所構成的,而是透過類似洋蔥般的殼層狀結構一層層向外堆疊,且層與層間並無連續成長的現象,此外每一層狀結構內的晶板排列方向會隨球晶成長而改變,也因此會形成valley和ridge交替成長之環狀消光環結構。

    Miscibility, kinetic analysis, polymorphism and spherulite morphology of poly(1,4-butylene adipate) (PBA) in blends with poly(benzyl methacrylate) (PBzMA) and poly(phenyl methacrylate) (PPhMA) were investigated by differential scanning calorimeter (DSC), polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS). On the other hand, the ring-banded spherulites of poly(ethylene adipate) (PEA) were investigated by POM, DSC, FT-IR, WAXD, liquid-state nuclear magnetic resonance (liquid-state NMR) and scanning electron microscope (SEM). DSC thermal analysis and OM characterization proves that PBA is miscible with PBzMA and PPhMA. It was observed that increasing amorphous polymer content decreases PBA growth rate. In addition, the depression of growth rate in PBA/PPhMA blends is higher than PBA/PBzMA blends, due to the higher glass transition temperature and molecular weight of PPhMA. The depression of PBA growth rate in blends retards the formation of kinetically stable form crystal and favors the formation of form crystal of PBA. In PBA/PBzMA blends, the spherulite morphology ofform PBA changes from ring band to ringless after the addition of PBzMA. However, the spherulite morphology of single crystal type (form and form) remains the same. On the other hand, the spherulite morphology ofform PBA is also changed to ringless in PBA/PPhMA blends. In contrast withform crystal of PBA in PBA/PBzMA, the spherulite morphology ofform PBA changes from leaf-like structure to zig-zag after the addition of PPhMA, and the ring spacing decreased with increasing PPhMA. From the results, it can be concluded that the formation of ring-banded spherulites has no relation with crystal type.
    In the second part, the growth mechanism of ring-banded PEA is presented. Two methods are used to investigate the ring band formation of the samples. Vapor etching technique is used to observe the surface of thin film, whereas no etching used for fractured surface. Afer vapor etching, no information about ring-banded spherulite formation mechanism can be provided due to the reaction occurring between PEA and etching solution (methylamine). The observation in the fractured surface of bulk implies that the ring-banded structure was made by onion-like shell structure instead of lamellar twisting, and there was no continuous growth between the layers. In addition, the lamellae direction arrangement will change in alternating way with spherulite growth, thus ring-banded structure could be formed.

    第一章 簡介 1 第二章 理論 10 2-1 高分子相容性 10 2-2 玻璃相轉移行為 11 2-3 結晶動力學理論 14 第三章 實驗 17 3-1 實驗所用之高分子和溶劑 17 3-2 實驗試樣之製備 18 3-3 實驗所用之儀器 18 第四章 結果與討論 20 4-1 PBA與不定型態高分子之摻合系統 20 4-1-1 相型態之分析 20 4-1-2分子間作用力分析 29 4-1-3多晶態及球晶型態之分析 32 4-1-4結晶動力分析 48 4-2 PEA環狀消光環之探討 59 4-2-1 薄膜蝕刻 59 4-2-2 塊狀PEA於三維空間之分析 65 第五章結論 71 參考文獻 72 附錄 76

    1. Liang, Z.; Pan, P.; Zhu, B.; Inoue, Y. Macromolecules 2010, 43 (15), 6429.
    2. Lee, L.T.; Woo, E. M.; Chen, W. T.; Chang, L.; Yen, K.C. Colloid Polym. Sci. 2010, 288, 439.
    3. Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Polym. Degrad. Stab. 2004, 83, 289.
    4. Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2010, 43, 8610.
    5. Lee, J. S.; Prabu, A. A.; Kim, K. J.; Park, C. Macromolecules 2008, 41, 3598.
    6. Mandal, T. K.; Woo, E. M. Macromol. Chem. Phys. 1998, 200,1143.
    7. Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
    8. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
    9. Coleman, M. M.; Moskala, E. J. Polymer 1983, 24, 251.
    10. Varnell, D. F.; Moskalk, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phy. Ed., 23, 658, 1983.
    11. Eisenberg, A.; Hara, M. Polym. Eng. Sci. 1984, 24, 1306.
    12. Chen, H. L.; Wang, S. F.; Lin, T. L. Macromolecules 1998, 31, 8924.
    13. Lin, C. T.; Kuo, S.W.; Lo, J.C.; Chang, F. C. J. Phys. Chem. B 2010, 114 (4), 1603.
    14. Lin, J. H.; Woo, E. M. Polymer 2006, 47(19), 6826.
    15. Braun, D.; Leiss, D.; Bergmann, M. J.; Hellmann, G. P. Eur. Polym. J. 1993, 29, 225.
    16. Ellis, T. S. Macromolecules 1995, 28, 1882.
    17. Chang, C. S.; Woo, E. M.; Lin, J. H. Macromol. Chem. Phys. 2006, 207, 1404.
    18. Sun, X.; Pi, F.; Zhang, J.; Takahashi, I.; Wang, F.; Yan, S.; Ozaki, Y. J. Phys. Chem. B 2011, 115, 1950.
    19. Penning, J. P.; John Manley, R. St. Macromolecules 1996, 29, 77.
    20. Penning, J. P.; John Manley, R. St. Macromolecules 1996, 29, 84.
    21. Liu, L. Z.; Chu, B. Macromolecules 1997, 30, 4398.
    22. Liu, L. Z.; Chu, B.; Penning, J. P.; John Manley, R. St. J. Macromol. Sci. Phys. B 1998, 37(4), 485.
    23. Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2010, 43, 8610.
    24. Wang, H.; Gan, Z.; Schultz, J. M.; Yan, S. Polymer 2008, 49, 2342.
    25. Mandal, T. K.; Woo, E. M. Polymer J. 1999, 31, 226.
    26. Chen Y. F.; Woo, E. M. Colloid Polym. Sci. 2008, 286, 917.
    27. Arribas,C.; Masegosa, R. M.; Salom, C.; Arévalo, E.; Prolongo, S. G.; Prolongo, M. G. J. Therm. Anal. Calorim. 2006, 86, 693.
    28. Prolongo, M. G.; Arribas, C.; Salom, C.; Masegosa, R. M. Polym. Eng. Sci. 2010, 50, 1820.
    29. Woo, E. M.; Mandal, T. K.; Chang, L. L. Macromolecules 2000, 33, 4186.
    30. Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P.Macromolecules 1990, 23, 1539.
    31. Woo, E. M.; Sun, Y. S.; Yang, C. P. Prog Polym Sci 2001, 26, 945.
    32. Sergio, B.; Stefano, V. M.; Vittorio, P.; Beniamino, P. Prog Polym Sci 1991, 16, 361.
    33. Lotz, B. Polymer, 1998, 39, 4561.
    34. Yokouchi, M.; Chatani, Y.; Tadokoro, H.; Teranishi, K.; Tani, H. Polymer 1973, 14, 267.
    35. Iwata, T.; Fujita, M.; Aoyagi, Y.; Doi, Y.; Fujisawa, T. Biomacromolecules 2005, 6, 1803.
    36. Furuhashi, Y.; Iwata, T.; Kimura, Y.; Doi, Y. Macromol Biosci. 2003, 3, 462.
    37. Suehiro, K.; Chatani, Y.; Tadokoro, H. Polym. J. 1975, 7, 352.
    38. Furuhashi, Y.; Iwata, T.; Sikorski, P.; Atkins, E.; Doi, Y. Macromolecules 2000, 33, 9423.
    39. Minke, R.; Blackwell, J. J. Macromol. Sci. Phys. B 1979, 16, 407.
    40. Minke, R.; Blackwell, J. J. Macromol. Sci. Phys. B 1980, 18, 233.
    41. Gan, Z.; Abe, H.; Doi, Y. Macromol. Chem. Phys. 2002, 203, 2369.
    42. Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Biomacromolecules 2004, 5, 371.
    43. Wu, M. C.; Woo, E. M. Polym. Int. 2005, 54, 1681.
    44. Yang, J.; Pan, P.; Hua, L.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules 2010, 43, 8610.
    45. Liang, Z.; Pan, P.; Zhu, B.; Inoue, Y. Macromolecules 2010, 43, 6429.
    46. Gan, Z.; Kuwabarab, K.; Abe, H.; Iwatab, T.; Doi, Y. Polym. Degrad. Stab. 2005, 87, 191.
    47. Hirose, T.; Murayama, E.; Umemoto, S.; Okui, N. “54th SPSJ Annual Meeting 2005”, 2005, 641.
    48. Jiang, N.; Zhao, L.; Gan, Z. Polym. Degrad. Stab. 2010, 95, 1045.
    49. Mitomo, H.; Barham, P. J.; Keller, A. Polymer J. 1987, 19, 1241
    50. Xu, J. B.; Guo, H.; Zhang, Z. M.; Zhou, J. J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G. Q.; Schultz, J. M. Macromolecules 2004, 37, 4118.
    51. Wang, Z.; Li, Y.; Yang, J.; Gou, Q.; Wu, Y.; Wu, X.; Liu, P.; Gu,Q. Macromolecules 2010, 43, 4441.
    52. Wang, W.; Jin, Y.; Yang, X.; Su, Z. H. J. Polym. Sci. Part B: Polym. Phys. 2010, 48, 541.
    53. Meyer, A.; Yen, K. C.; Li, S. H.; Förster, S.; Woo, E. M., Ind. Eng. Chem. Res. 2010, 49, 12084,
    54. Frömsdorf, A.; Woo, E. M.; Lee, L. T.; Chen,Y. F.; Förster, S. Macromol. Rapid Commun. 2008, 29, 1322.
    55. Zhao, L.; Wang, X. ; Li, L. ; Gan, Z. Polymer 2007, 48, 6152.
    56. Flory, P. J. J. Am.Chem. Soc., 1965, 86, 1833.
    57. Flory, P. J. Discuss Faraday Soc., 1970, 49, 7.
    58. Sperling, L. H. “Introduction to Physical Polymer Science 2nd ed.”, John Wiley & Sons, Inc., New York, 1992.
    59. Gordon M.; Taylor J. S. J. Appl.Chem. 1952, 2, 493.
    60. Kovacs , A. J. Adv. Polym. Sci. 1963, 3, 394.
    61. Avrami, M. J. Chem. Phys. 1949, 28, 2845.
    62. Woo, E. M.; Hsieh, Y. T.; Chen, W. T.; Kuo, N. T.; Wang, L. Y. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 1135.
    63. Cheung, Y. W.; Stein, R. S. Macromolecules 1994, 27, 2512.
    64. Lezcano, E. G.; de Arellano, D. Ramírez; Prolongo, M. G.; Coll, C. S. Polymer 1998, 39, 1583.
    65. Yan, C.; Zhang, Y.; Hu, Y.; Ozaki, Y.; Shen, D.; Gan, Z.; Yan, S.; Takahashi, I. J. Phys. Chem. B 2008, 112 , 3311.
    66. Penning, J. P.; John Manley R.S. Macromolecules 1996, 29, 84.
    67. Strobl G.“ The physics of polymers: concepts for understanding their structures and behavior. 3rd ed. ”, New York: Springer; 2007.
    68. Campbell, D.; White, J. R.“Polymer characterization: physical techniques”, Chapman & Hall, 1989.
    69. Abe, H.; Doi, Y.; Satkowski, M.M.; Noda, I. Macromolecules 1994, 27, 50.
    70. Nojima, S.; 2.Wang, D.; Ashida T. Polym. J. 1991, 23, 1473.
    71. Di Lorenzo, M.L. Prog. Polym. Sci. 2003, 28, 663.
    72. Chang, L.; Chou, Y. H.; Woo, E. M. Colloid Polym. Sci. 2011, 289, 199.
    73. Vincent, H. M.; Robert, E. P. Macromolecules 2003, 36, 675.
    74. Meng, Y.; Li, H.; Huo, H.; Jiang, S.; An, L. J. Appl. Polym. Sci. 2007, 105, 615.
    75. Stein, R.S.; Misra, A. J. Polym. Sci. Polym Phys. Ed 1980, 18, 327.
    76. Roche, E. J.; Stein, R.S.; Thomas, E.L. J. Polym. Sci. Polym Phys. Ed 1980, 18, 1145.
    77. Yen, K. C.; Woo, E. M. Polymer 2009, 50, 662.
    78. Shahin, M. M.; Olley, R. H.; Blissett, M. J. J. Polym. Sci., Part B: Polym. Phys., 1999 37, 2279.
    79. Shahin, M. M.; Olley, R. H. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 124.
    80. Mogoda,A.S.; Ahmad, Y. H.; Badawy, W.A. Mater. Chem. Phys. 2011, 126, 676.
    81. Markey, L.; Janimak, J. J.; Stevens, G. C. Polymer 2001, 42, 6221.
    82. Li, J.; Li, Y.; Zhou, J.; Yang, J.; Jiang, Z.; Chen, P.; Wang, Y.; Gu, Q.; Wang, Z. Macromolecules 2011, 44, 2918.
    83. Woo, E. M.; Wu, P. L.; Wu, M. C.; Yan, K. C. Macromol. Chem. Phys. 2006, 207, 2232.
    84. Nakafuku C.; Polym J. 1998, 30, 761.
    85. Diaconu I.; Craus M.; Coman P.; Caraculacu A. Rev. Roum. Chem. 1994, 39, 339.
    86. Yang J.; Pan P.; Dong T.; Inoue Y.; Polymer 2010, 51, 807.
    87. Zhu B.; He Y.; Asakawa N.; Yoshie N.; Nishida N.; Inoue Y. Macromolecules 2005, 38, 6455.
    88. Yang J.; Li Z.; Pan P.; Zhu B.; Dong T.; Inoue Y. J. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1997.

    下載圖示 校內:2013-08-11公開
    校外:2013-08-11公開
    QR CODE