| 研究生: |
楊家明 Yang, Chia-Ming |
|---|---|
| 論文名稱: |
具疏水性與疏油性微結構之研究 Micro-structures with Hydrophobic and Oleophobic Functions |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 蓮花效應 、接觸角 、PDMS 、超疏水性 、疏油性 、空氣彈簧 |
| 外文關鍵詞: | Lotus effect, Contact angle, Super-hydrophobic, oleophobicity, Air spring |
| 相關次數: | 點閱:106 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然界中的蓮花葉面具有超疏水之特性,其接觸角約150°、滑動角約5°。其表面具能防水、自潔和流體滑動於界面之能力,可應用於玻璃清潔、太陽能電池、浴室及交通工具之清潔。基於仿生學建立超疏水表面之結構,在近幾年引發極廣泛的基礎應用研究。然而該凸柱狀結構之結構強度低、大量複製困難,並易受外力受損失去自潔性的缺點。
本研究在於設計與分析創新微米級微結構,相對於凸柱狀之蓮花結構,提出一種多層次半封閉微結構,其封閉處可困住空氣,產生超疏水性之機制包括回復力、基材彈性與封閉性之空氣彈簧。此半封閉性之反蓮花結構,其接觸角可達168°、滑動角約於5°,水滴可於微結構表面反彈。但是在實際應用上,若表面受到油脂汙染其超疏水性也會遭受破壞,故製作出具疏水及疏油性之表面是相當重要的。實驗主要利用特殊塗料來改變PDMS表面特性並探討此結構之疏水特性及疏油特性,也從實際應用上討論其潛力與可行性。
In this study, we show an innovative novel super-hydrophobic micro-structure. Opposite to the pillar lotus structure, the structure is multi-leveled concaved with trapped air. The mechanisms for waterproof include the restoring force, the elastic deformation of the structure and the air spring force resulting from the concaved structure with trapped air. The semi-mural micro-structure of negative lotus structure has the following characteristics which the contact angle is 168°, sliding angle is about 5°.In fact, the super-hydrophobicity of the surface will be destroyed by oil pollution. It is important that fabricating a surface with both super-hydrophobic and super-oleophobic functions. The experiment use special coating to change the characteristics of PDMS surface and proof the super-hydrophobicity and super-oleophobicity of this surface. Also, we discuss its potential and feasibility in the practical applications.
Keywords: Lotus effect, Contact angle, PDMS, Super-hydrophobicity, oleophobicity, Air spring.
[1] A.B.D. Cassie and S. Baxter, Wettability of Porous Surfaces., Trans. Faraday Soc., vol. 40, pp. 546-551, 1944.
[2] Abraham Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be ?, Langmuir, vol. 19, no. 20, pp. 8343-8348, 2003.
[3] A. Marmur, The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, vol. 20, pp. 3517-3519, 2004.
[4] B. Bhushan and Y. C. Jung, Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy, Vol. 107, no. 10-11, pp.1033-1041, 2007.
[5] B. Bhushan, Y. C. Jung, and K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion, Phil. Trans. R. Soc., vol. 367, no. 1894, 1631-1672, 2009.
[6] B. Bhushan, and Y. C. Jung, and K. Koch, Self-Cleaning efficiency of artificial superhydrophobic surfaces. Langmuir, vol. 25, no. 5, pp. 3240-3248, 2009.
[7] C. G. Furmidge, Studies at phase interfaces: Sliding of liquid drops on solid surfaces and a theory for spray retention, Journal of Colloid Science, vol. 17, no. 4, pp. 309, 1962.
[8] C. Neinhuis and W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany, vol. 79, pp. 667-677, 1997.
[9] D. Richard and D. Quéré, Bouncing water drops, Europhys. Lett., vol. 50, pp. 769, 2000.
[10] D. Quéré, Non-sticking drops, Rep. Prog. Phys., vol. 68, pp. 2495-2532, 2005.
[11] D. Bartolo, C. Josserand and D. Bonn, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces, J. Fluid Mech., vol. 545, pp. 329-338, 2005.
[12] D. Quéré, Bouncing transitions on microtextured materials, Europhys. Lett., vol. 74, pp. 306, 2006.
[13] Daoai Wang, Xiaolong Wang, Xinjie Liu, and Feng Zhou, Engineering a Titanium Surface with Controllable Oleophobicity and Switchable Oil Adhesion, J. Phys. Chem. C, vol. 114, pp. 9938-9944, 2010.
[14] G. McHale, N. J. Shirtcliffe, and M. I. Newton, Contact-Angle Hysteresis on Super-Hydrophobic Surfaces, Langmuir, vol. 20, pp. 10146-10149, 2004.
[15] H. Gao, X. Wang, H. Yao, S. Gorb and E. Arzt, Mechanics of hierarchical adhesion structures of geckos, Mechanics of Materials., vol. 37, pp. 275-285, 2005.
[16] Hua Zhou , Hongxia Wang , Haitao Niu , Adrian Gestos , Xungai Wang , and Tong Lin, Fluoroalkyl Silane Modifi ed Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating, Adv. Mater., vol. 24, pp. 2409–2412, 2012.
[17] J. Bico, C. Marzolin, and D. Quéré, Pearl drops, Europhys Lett., vol.47, no. 2, pp.220-226, 1999.
[18] J. Bico, U. Thiele and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects., vol. 206, no. 9, pp. 41-46, 2002.
[19] Jia Zhu, Ching-Mei Hsu, Zongfu Yu, Shanhui Fan, and Yi Cui., Nanodome Solar Cells with Efficient Light Management and Self-Cleaning, Nano Lett., vol. 10, pp. 1979–1984, 2010.
[20] Jiale Yong, Feng Chen, Qing Yang, Dongshi Zhang, Hao Bian, Guangqing Du, Jinhai Si, Xiangwei Meng, and Xun Hou, Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays, Langmuir, vol. 29, pp. 3274−3279, 2012.
[21] K. Koch, B. Bhushan, and W. Barthlott, Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics, Progress in Materials Science., vol. 54, pp. 137-178, 2009.
[22] Lichao Gao and Thomas J. McCarthy, The “Lotus Effect” Explained: Two Reasons Why Two Length Scales of Topography Are Important, Langmuir, vol. 22, pp. 2966-2967, 2006.
[23] Liangliang Cao, Andrew K. Jones, Vinod K. Sikka, Jianzhong Wu and Di Gao, Anti-Icing Superhydrophobic Coatings, Langmuir., vol. 25, no. 21, pp. 12444-12448, 2009.
[24] Lidiya Mishchenko, Benjamin Hatton, Vaibhav Bahadur, J. Ashley Taylor, Tom Krupenkin,§andJoanna Aizenberg, Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water droplets, ASC NANO, vol. 4, no. 12, 2010.
[25] Longquan Chen, Zhiyong Xiaob, Philip C.H. Chanc, Yi-Kuen Leea, Zhigang Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, Applied Surface Science, vol. 257, pp. 8857– 8863, 2011.
[26] M. Miwa, Akira Nakajima, Akira Fujishima, Kazuhito Hashimoto, and Toshiya Watanabe, Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, vol. 16, no. 13, pp. 5754–5760, 2000.
[27] MortezaMohammadia, Sara Moghtadernejadb, Percival J. Grahamc and Ali Dolatabadi, Dynamic Impact behavior of water droplet on a superhydrophobic surface in the presence of stagnation flow, Applied Mechanics and Materials, vol. 232, pp 267-272, 2012.
[28] Q. S. Zheng, Y. Yu, and Z. H. Zhao, Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces, Langmuir, vol. 21, no. 26, pp. 12207–12212, 2005.
[29] Peichun Tsai, Sergio Pacheco, Christophe Pirat, Leon Lefferts, and Detlef Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir, vol. 25, no. 20, pp 12293–12298, 2009.
[30] R. N. Wenzel, Resistance of solid surface to wetting by water. Ind. Eng.Chem., vol. 28, pp. 988, 1936.
[31] Rioboo R., Marengo M. and Tropea C., Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids., vol. 33, pp. 112-124, 2002.
[32] R. Aikifa, S. Yang, W. Xianfeng, R. Tao, D. Bin, Y. Jianyong, and S. A. Salem, Novel fluorinated polybenzoxazine-silica films: chemical synthesis and superhydrophobicity, RSC Advances., vol. 2, pp. 12804-12811, 2012.
[33] Š. Šikalo, M. Marengo, C. Tropea and E.N. Ganić, Analysis of impact of droplets on horizontal surface, Experimental Thermal and Fluid Science., vol. 25, pp. 503-510, 2002.
[34] Š. Šikalo, Tropea C. and Ganić E.N. Dynamic wetting angle of a spreading droplet, Experimental Thermal and Fluid Science., vol. 29, no. 7, pp. 795-802, 2005.
[35] Sang Eon Lee, Dongjin Lee, Phillip Lee, Seung Hwan Ko, Seung S. Lee, Seong Uk Hong, Flexible Superhydrophobic Polymeric Surfaces with Micro-/Nanohybrid Structures Using Black Silicon, Macromol. Mater. Eng., vol. 298, pp. 311-317, 2013.
[36] Thomas Young, An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond., vol. 95, pp. 65-87, 1805.
[37] W. E., Squamation and ecology of sharks, Courier Forschungsinstitut Senckenberg., vol. 78, pp. 1-255, 1985.
[38] X. F. Gao and L. Jiang, Biophysics: Water-repellent Legs of Water Striders, Nature., vol. 432, pp. 36, 2004.
[39] Xiying Li, Liqun Mao, and Xuehu Ma, Dynamic Behavior of Water Droplet Impact on Microtextured Surfaces: The Effect of Geometrical Parameters on Anisotropic Wetting and the Maximum Spreading Diameter, Langmuir, vol. 29, pp. 1129-1138, 2012.
[40] Y. Bar-Cohen, Biomimetics: biologically inspired technologies, Boca Raton, Taylor and Francis., 2006.
[41] Y. C. Jung and B. Bhushan, Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity, Nanotechnology, vol. 17, pp. 4970, 2006.
[42] Y. C. Jung and B. Bhushan, Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces, Nanotechnology., vol. 17, pp. 4970-4980, 2006.
[43] Yong Chae Jung and Bharat Bhushan, Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces, Langmuir, vol. 24, pp. 6262-6269, 2008.
[44] Yong Chae Jung and Bharat Bhushan, Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces, Langmuir, vol. 25, no. 16, pp. 9208–9218, 2009.
[45] Y. Kwon, N. Patankar, J. Choi and J. Lee, Design of Surface Hierarchy for Extreme Hydrophobicity, Langmuir., vol. 25, no. 11, pp. 6129–6136, 2009.
[46] Yong-Bum Park, Hwon Im, Maesoon Im and Yang-Kyu Choi, Self-cleaning effect of highly water-repellent microshell structures for solar cell applications, J. Mater. Chem., vol. 21, pp. 633-636, 2011.
[47] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, vol. 18, pp. 5815-5822, 2002.
[48] 廖士貴, 國立成功大學機械工程學系碩士論文, 2010.
[49] 陳彥君, 國立成功大學機械工程學系碩士論文, 2011.
[50] 石嘉嘉, 國立成功大學機械工程學系碩士論文, 2012.
[51] 蕭舜心, 國立成功大學機械工程學系碩士論文, 2013.