簡易檢索 / 詳目顯示

研究生: 陳高烜
Chen, Geo-Xuan
論文名稱: 複合材料的等效磁致伸縮係數
Magnetostriction of Composite Materials
指導教授: 陳東陽
Chen, Tungyang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 103
中文關鍵詞: 磁致伸縮
外文關鍵詞: magnetostriction
相關次數: 點閱:39下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的在於分析複合材料的等效磁致伸縮係數(effective magnetostriction)。論文中利用複合材料理論中的各種微觀力學模式如Reuss模式、Voigt模式、dilute模式、Mori-Tanaka模式與自洽模式(self-consistent method)等求出三維多晶體、顆粒加強複合材料、二維多晶體與纖維加強複合材料的等效彈性模數與等效磁致伸縮係數。

    this artical show some models of composites materials
    and their magnetostriction. We use Reuss, Voigt, dilute, Mori-Tanaka and self-consistent methods to solve effective magnetostriction of three dimensional polycrystals, particle-reinforced composite materials
    ,two dimensional polycrystals and fibrous-reinforced
    composite materials.

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅵ 圖目錄 Ⅷ 符號表 XI 第一章 序論 1 1.1 理論背景 1 1.2 文獻回顧 1 1.3 論文內容簡介 3 第二章 磁致伸縮材料介紹 5 2.1 磁性來源 5 2.2 磁致伸縮物性介紹 8 2.2.1 磁致伸縮現象 8 2.2.2 單晶立方體磁致伸縮材料 8 2.2.3 等向性磁致伸縮材料 10 2.2.4 多晶體磁致伸縮 10 2.3 尤拉角介紹 11 2.4 各種平均分佈的意義 13 第三章 顆粒加強複合材料的等效磁致伸縮係數 17 3.1 Reuss模式多晶體的磁致伸縮值 17 3.2 Voigt模式多晶體的磁致伸縮值 21 3.3 Dilute模式的磁致伸縮值 23 3.4 Mori-Tanaka模式的磁致伸縮值 28 3.5 自洽模式的磁致伸縮值 32 3.6 等向性材料精確解 35 第四章 纖維加強複合材料的等效磁致伸縮係數 47 4.1 等效彈性模數與等效磁致伸縮係數關聯 47 4.2 Reuss模式 50 4.2.1 Reuss模式二維多晶體的磁致伸縮值 50 4.2.2 Reuss模式纖維加強複合材料的磁致伸縮值 57 4.3 Voigt模式 58 4.3.1 Voigt模式二維多晶體的磁致伸縮值 58 4.3.2 Voigt模式纖維加強複合材料的磁致伸縮值 60 4.4 Dilute模式的磁致伸縮值 61 4.5 Mori-Tanaka模式的磁致伸縮值 62 4.6 自洽模式的磁致伸縮值 63 第五章 結果與討論 74 5.1 結果與討論 74 5.1.1 單晶立方對稱磁致伸縮值 74 5.1.2 多晶立方對稱磁致伸縮值 74 5.1.3 顆粒加強複合材料 75 5.1.4 纖維加強複合材料 76 5.2 結論 80 參考文獻 82 附錄A 85 附錄B 88 附錄C 90 附錄D 95 附錄E 97 附錄F 102

    Becker, R. and Doring, W. D., Ferromagnetismus, Springer, Berlin
    (1939).

    Benveniste, Y., A New Approach to the Application of Mori-Tanak’s The- ory in Composite Materials, Mechanics of Materials, 6, pp. 147-157 (1987).

    Birsan, M., The Bounds of Saturation Magnetostriction in Polycrystalline Materials, J. Appl. Phys. 82, pp. 6138-6141 (1997).

    Bozorth, R. M., Tilden, E. F. and Williams, A. J., Anisotropy and Magne-
    tostriction of Some Ferrites, Phys. Rev. 99, pp. 1788-1798 (1955).

    Callen, H. B. and Goldberg, N., Intermetallic Compounds, J. Appl. Phys.
    36, pp. 976-977 (1965).

    Chen, T., Dvorak, G. J. and Benveniste, Y., Mori-Tanaka Estimates of the
    Overall Elastic Moduli of Certain Composite Materials, J. Appl. Mechan-
    ics 59, pp. 539-546 (1992).

    Chen, T., Nan, C. E. and Weng, G. J., Exact Connections between Effecti-
    ve Magnetostriction and Effective Elastic Moduli of Fibrous Composites and Polycrystals, J. Appl. Phys. 94, pp. 491-495 (2003).

    Cullity, B. D., Introduction to Magnetic Materials, Addison-Wesley Read-
    ing, MA, Chap. 8 (1972).

    Eshelby, J. D., The Determination of the Elastic Field of an Ellipsoidal
    Inclusion and Related Problems, Proc. Roy. Soc. London, A 241, pp. 376-
    396 (1957).

    Ferrari, M. and Johnson, G. C., The Equilibrium Properties of a 6 mm
    Polycrystal Exhibiting Transverse Isotropy, J. Appl. Phys. 63, pp. 4460-
    4468 (1988).
    Herbst, J. F., Capehart, T. W. and Pinkerton, F. E., Estimating the Effecti-
    ve Magnetostriction of a Composite : A Simple Model, Appl. Phys. Lett.
    70, pp. 3041-3043 (1997).

    Hill, R., A Self-Consistent Mechanics of Composite Materials, J. Mech.
    Phys. Solids 13, pp. 213-222 (1965).

    Honda, T., Arai, K. I. and Yamaguchi M., Fabrication of magnetostrictive actuators using rare-earth (Tb, Sm)-Fe thin films (invited), J. Appl. Phys. 76, pp. 6994-6999 (1994).

    Huang, J. H., Nan, C. W. and Li, R. U., Micromechanics Approach for
    Effective Magnetostriction of Composite Materials, J. Appl. Phys. 91, pp.
    9261-9266 (2002).

    Masiyama, Y., On the Magnetostriction of a Single Crystal of Nickel, Sci.
    Reports Tohoku Univ. 17, pp. 947-961 (1928).

    Mura, T., Micromechanics of Defects in Solids, Martinus Nijhoff, Dordr-
    echt, The Netherlands (1987).

    Nan, C. W. and Weng, G. J., Influence of Microstructural features on the
    Effective Magnetostriction of Composite Materials, Physical Review B,
    60, pp. 6723-6730 (1999).

    Nan, C. W. and Weng, G. J., Influence of Polarization Orientation on the
    Effective Properties of Piezoelectric Composites, J. Appl. Phys. 88, pp.
    416-423 (2000).

    Nan, C. E., Huang, Y. and Weng, G. J., Effect of Porosity on the Effective
    Magnetostriction of Polycrystals, J. Appl. Phys. 88, pp. 339-343 (2000).

    Quandt, E., Gerlach, B. and Seemann K., Preparation and applications of
    magnetostrictive thin films, J. Appl. Phys. 76, pp. 7000-7002 (1994).

    Roe, R. J., Description of Crystallite Orientation in Polycrystalline Mater-
    ials, III General Soluation to Pole Figure Inversion, J, Appl. Phys. 36, pp.
    2024-2031 (1965).
    Ting, T. C. T., Anisotropic Elasticity Theory and Applications, Oxford University Press, New York, (1996).

    Webster, W. L., Magnetostriction in Iron Crystals, Proc. Roy. Soc. A, 109,
    pp. 570-584 (1925).

    鄭振東,實用磁性材料,全華科技圖書股份有限公司,台灣,(1999)。

    紀近成,壓磁/磁致伸縮智慧型複合材料之物性分析,逢甲大學機械
    工程研究所碩士論文,台灣,(2001 七月)。

    下載圖示 校內:立即公開
    校外:2003-07-08公開
    QR CODE