簡易檢索 / 詳目顯示

研究生: 陳尚賢
Chen, Shang-hsien
論文名稱: 研究TLE2在v-Src所調控的細胞轉型中扮演的角色
Study the role of TLE2 in v-Src-mediated transformation
指導教授: 呂增宏
Leu, Tzeng-horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 60
中文關鍵詞: 細胞轉型
外文關鍵詞: v-Src, Eps8, TLE2
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Eps8 (Epidermal growth factor receptor substrate no.8)有兩個isoforms,分別為p97Eps8及p68Eps8。我們實驗室先前已發現p97Eps8 參與在v-Src所調控的腫瘤生成。為了進一步了解p97Eps8所調控的訊息傳遞,我們利用yeast two-hybrid的方法來搜尋能與p97Eps8有交互作用的蛋白質,並發現TLE2 (transducin-like enhancer of split 2)會和Eps8有交互作用,更進一步的研究顯示主要能與p68Eps8有交互作用。此外,TLE2與p97Eps8及p68Eps8皆在IV5 (v-Src-transformed cells)細胞中有大量表達的情形。我們也發現,當我們抑制IV5細胞中的Eps8也能抑制tle2的轉錄,降低TLE2表現量,然而在IV5細胞中有表達的另一TLE family member,TLE3卻不會隨Eps8的表現量增減而改變,顯示TLE2在Eps8的訊息傳遞途徑中具有一定重要性。在此同時,我們也發現TLE2具有至少兩種isoforms (約76kDa及118kDa),表現量會隨Eps8表現增減而有所改變。顯示在Eps8參與在v-Src所調控的腫瘤生成中,TLE2 isoforms或許也具有相當的重要性。當進一步研究TLE2在細胞轉型的作用,實驗結果發現TLE2具有抑制正常細胞NIH3T3及表達p97Eps8的人類腎臟293T細胞在軟洋菜膠中形成colony的能力。我們的研究結果顯示,Eps8可能透過調控TLE2表現及與TLE2交互作用來調控TLE2在細胞轉型上的功能。

    Two isoforms, i.e. p97Eps8 and p68Eps8, were detected in many cultured cell lines by Eps8 antibody. Our previous studies indicated that p97Eps8 participates in v-Src-mediated tumorigenesis. To characterize Eps8-mediated signal transduction, we previously identified TLE2 (transducin-like enhancer of split 2) as one of its associated proteins by yeast-two hybrid screening. Further studies indicated that TLE2, as well as both Eps8 isoforms, was overexpressed in v-Src transformed IV5 cells. Interestingly, decreased expression of TLE2 was detected in Eps8-attenuated IV5 cells suggested its involvement in Eps8-mediated signal transduction. To study the role of TLE2 in cell proliferation and transformation, we transiently expressed tle2 into NIH3T3 cells or Eps8 overexpressing human kidney 293T cells. We found TLE2 overexpression could inhibit their anchorage-independent growth in soft agar. These findings suggested that TLE2 might be able to interact with Eps8 and inhibit the transforming ability of Eps8.

    中文摘要 1 英文摘要 3 縮寫檢索表 5 第一章 緒論 7 第二章 實驗材料及方法 第一節 實驗材料 17 第二節 實驗方法 20 第三章 實驗結果 33 第四章 討論 38 第五章 圖表 43 參考文獻 53

    Allen, T., van Tuyl, M., Iyengar, P., Jothy, S., Post, M., Tsao, M. S., and Lobe, C. G. (2006). Grg1 acts as a lung-specific oncogene in a transgenic mouse model. Cancer Res 66, 1294-1301.

    Biesova, Z., Piccoli, C., and Wong, W. T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.

    Brantjes, H., Roose, J., van De Wetering, M., and Clevers, H. (2001). All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 29, 1410-1419.

    Castagnino, P., Biesova, Z., Wong, W. T., Fazioli, F., Gill, G. N., and Di Fiore, P. P. (1995). Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene 10, 723-729.

    Chen, G., and Courey, A. J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene 249, 1-16.

    Dehni, G., Liu, Y., Husain, J., and Stifani, S. (1995). TLE expression correlates with mouse embryonic segmentation, neurogenesis, and epithelial determination. Mech Dev 53, 369-381.

    Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754.

    Eastman, Q., and Grosschedl, R. (1999). Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11, 233-240.

    Eberhard, D., Jimenez, G., Heavey, B., and Busslinger, M. (2000). Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. Embo J 19, 2292-2303.

    Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W. T., and Di Fiore, P. P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. Embo J 12, 3799-3808.

    Fisher, A. L., and Caudy, M. (1998). Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12, 1931-1940.

    Flores-Saaib, R. D., and Courey, A. J. (2000). Analysis of Groucho-histone interactions suggests mechanistic similarities between Groucho- and Tup1-mediated repression. Nucleic Acids Res 28, 4189-4196.

    Gallo, R., Provenzano, C., Carbone, R., Di Fiore, P. P., Castellani, L., Falcone, G., and Alema, S. (1997). Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene 15, 1929-1936.

    Gao, X., Chandra, T., Gratton, M. O., Quelo, I., Prud'homme, J., Stifani, S., and St-Arnaud, R. (2001). HES6 acts as a transcriptional repressor in myoblasts and can induce the myogenic differentiation program. J Cell Biol 154, 1161-1171.

    Gratton, M. O., Torban, E., Jasmin, S. B., Theriault, F. M., German, M. S., and Stifani, S. (2003). Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 23, 6922-6935.

    Grbavec, D., Lo, R., Liu, Y., and Stifani, S. (1998). Transducin-like Enhancer of split 2, a mammalian homologue of Drosophila Groucho, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development. Eur J Biochem 258, 339-349.

    Grbavec, D., and Stifani, S. (1996). Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223, 701-705.

    Husain, J., Lo, R., Grbavec, D., and Stifani, S. (1996). Affinity for the nuclear compartment and expression during cell differentiation implicate phosphorylated Groucho/TLE1 forms of higher molecular mass in nuclear functions. Biochem J 317 (Pt 2), 523-531.

    Inada, M., Yasui, T., Nomura, S., Miyake, S., Deguchi, K., Himeno, M., Sato, M., Yamagiwa, H., Kimura, T., Yasui, N., et al. (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214, 279-290.

    Jan, Y., Matter, M., Pai, J. T., Chen, Y. L., Pilch, J., Komatsu, M., Ong, E., Fukuda, M., and Ruoslahti, E. (2004). A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell 116, 751-762.

    Javed, A., Guo, B., Hiebert, S., Choi, J. Y., Green, J., Zhao, S. C., Osborne, M. A., Stifani, S., Stein, J. L., Lian, J. B., et al. (2000). Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 113 (Pt 12), 2221-2231.

    Karlsson, T., Songyang, Z., Landgren, E., Lavergne, C., Di Fiore, P. P., Anafi, M., Pawson, T., Cantley, L. C., Claesson-Welsh, L., and Welsh, M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10, 1475-1483.

    Kim, I. S., Otto, F., Zabel, B., and Mundlos, S. (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80, 159-170.

    Kishan, K. V., Scita, G., Wong, W. T., Di Fiore, P. P., and Newcomer, M. E. (1997). The SH3 domain of Eps8 exists as a novel intertwined dimer. Nat Struct Biol 4, 739-743.

    Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.

    Leu, T. H., Yeh, H. H., Huang, C. C., Chuang, Y. C., Su, S. L., and Maa, M. C. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881.

    Linderson, Y., Eberhard, D., Malin, S., Johansson, A., Busslinger, M., and Pettersson, S. (2004). Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes. EMBO Rep 5, 291-296.

    Maa, M. C., Hsieh, C. Y., and Leu, T. H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112.

    Maa, M. C., Lai, J. R., Lin, R. W., and Leu, T. H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450, 341-351.

    Maa, M. C., Lee, J. C., Chen, Y. J., Chen, Y. J., Lee, Y. C., Wang, S. T., Huang, C. C., Chow, N. H., and Leu, T. H. (2007). EPS8 Facilitates Cellular Growth and Motility of Colon Cancer Cells by Increasing the Expression and Activity of Focal Adhesion Kinase. J Biol Chem 282, 19399-19409.

    Mallo, M., Franco del Amo, F., and Gridley, T. (1993). Cloning and developmental expression of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Mech Dev 42, 67-76.

    Matoskova, B., Wong, W. T., Nomura, N., Robbins, K. C., and Di Fiore, P. P. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679-2688.

    Matoskova, B., Wong, W. T., Salcini, A. E., Pelicci, P. G., and Di Fiore, P. P. (1995). Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol 15, 3805-3812.

    Milili, M., Gauthier, L., Veran, J., Mattei, M. G., and Schiff, C. (2002). A new Groucho TLE4 protein may regulate the repressive activity of Pax5 in human B lymphocytes. Immunology 106, 447-455.

    Miyasaka, H., Choudhury, B. K., Hou, E. W., and Li, S. S. (1993). Molecular cloning and expression of mouse and human cDNA encoding AES and ESG proteins with strong similarity to Drosophila enhancer of split groucho protein. Eur J Biochem 216, 343-352.

    Nuthall, H. N., Husain, J., McLarren, K. W., and Stifani, S. (2002). Role for Hes1-induced phosphorylation in Groucho-mediated transcriptional repression. Mol Cell Biol 22, 389-399.

    Nuthall, H. N., Joachim, K., Palaparti, A., and Stifani, S. (2002). A role for cell cycle-regulated phosphorylation in Groucho-mediated transcriptional repression. J Biol Chem 277, 51049-51057.

    Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., Stamp, G. W., Beddington, R. S., Mundlos, S., Olsen, B. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771.

    Parkhurst, S. M. (1998). Groucho: making its Marx as a transcriptional co-repressor. Trends Genet 14, 130-132.

    Polakis, P. (2000). Wnt signaling and cancer. Genes Dev 14, 1837-1851.

    Ren, B., Chee, K. J., Kim, T. H., and Maniatis, T. (1999). PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev 13, 125-137.

    Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R., and Nakanishi, S. (1992). Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6, 2620-2634.

    Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.

    Scita, G., Tenca, P., Areces, L. B., Tocchetti, A., Frittoli, E., Giardina, G., Ponzanelli, I., Sini, P., Innocenti, M., and Di Fiore, P. P. (2001). An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. J Cell Biol 154, 1031-1044.

    Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8, 68-74.

    Stifani, S., Blaumueller, C. M., Redhead, N. J., Hill, R. E., and Artavanis-Tsakonas, S. (1992). Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2, 119-127.

    Taipale, J., and Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349-354.

    Tetsuka, T., Uranishi, H., Imai, H., Ono, T., Sonta, S., Takahashi, N., Asamitsu, K., and Okamoto, T. (2000). Inhibition of nuclear factor-kappaB-mediated transcription by association with the amino-terminal enhancer of split, a Groucho-related protein lacking WD40 repeats. J Biol Chem 275, 4383-4390.

    Turner, C. A., Jr., Mack, D. H., and Davis, M. M. (1994). Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297-306.

    Wang, W., Wang, Y. G., Reginato, A. M., Glotzer, D. J., Fukai, N., Plotkina, S., Karsenty, G., and Olsen, B. R. (2004). Groucho homologue Grg5 interacts with the transcription factor Runx2-Cbfa1 and modulates its activity during postnatal growth in mice. Dev Biol 270, 364-381.

    Wong, W. T., Carlomagno, F., Druck, T., Barletta, C., Croce, C. M., Huebner, K., Kraus, M. H., and Di Fiore, P. P. (1994). Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061.

    Yao, J., Lai, E., and Stifani, S. (2001). The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription. Mol Cell Biol 21, 1962-1972.

    Yao, J., Liu, Y., Husain, J., Lo, R., Palaparti, A., Henderson, J., and Stifani, S. (1998). Combinatorial expression patterns of individual TLE proteins during cell determination and differentiation suggest non-redundant functions for mammalian homologs of Drosophila Groucho. Dev Growth Differ 40, 133-146.

    Yu, X., Li, P., Roeder, R. G., and Wang, Z. (2001). Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol Cell Biol 21, 4614-4625.

    下載圖示 校內:2012-08-01公開
    校外:2017-08-01公開
    QR CODE