| 研究生: |
劉乃碩 Liu, Nai-Shuo |
|---|---|
| 論文名稱: |
添加鎵元素對錫鋅銀鋁無鉛銲錫各種性質影響之研究 The investigation of various properties on Sn-8.5Zn-0.5Ag-0.1Al-xGa solder with different Ga content |
| 指導教授: |
林光隆
Lin, K. L. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 界面反應 、拉伸 、抗氧化性 、無鉛銲錫 、潤濕性 |
| 外文關鍵詞: | interfacial reaction, wetting, tensile, oxidation resistance, lead-free solder |
| 相關次數: | 點閱:106 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究添加微量的銀、鋁與鎵並改變鎵含量來觀察鎵元素對錫鋅銀鋁銲錫性質的影響。本實驗室已發表錫鋅銀鋁鎵五元銲錫的專利,但對於鎵元素在五元銲錫中所扮演的角色並不清楚,因此本研究改變不同鎵元素在錫鋅銀鋁銲錫中的含量,討論鎵元素對錫鋅系銲錫之熱性質、拉伸性質、潤濕性及抗氧化性等性質的影響。
銲錫顯微結構顯示,銲錫基地中會出現樹枝狀的AgZn3化合物、針棒狀的富鋅相與β錫的組織,而由於添加銀的關係,銲錫合金的基地從原本的錫鋅共晶組織轉變成亞共晶組織。由EPMA的結果顯示,鎵會均勻固溶於錫基地中,並有部份會固溶於富鋅相中,而鋁則會在晶界偏析。熱差分析(Differential Scanning Calorimetry, DSC)的結果顯示,隨著鎵含量的增加(0.05~2wt%),銲錫的固相線溫度會從197℃降至183℃,並會使銲錫的固液兩相區增大。因為五元銲錫已是亞共晶的成份,因此在銲錫靠近液相線附近會生成肩狀的放熱峰。在機械性質方面,隨著鎵含量的增加,銲錫的抗拉強度與伸長率都會增加,而當鎵含量超過1wt%後,銲錫的伸長率會從原本的42%降至20%,並從拉伸破斷面可以得知不同鎵含量的五元銲錫均為延性破斷。
在潤濕實驗中發現,添加鎵會增進銲錫的潤濕性,而錫鋅銀鋁鎵五元銲錫隨著鎵含量的增加,最大潤濕力會增加,而潤濕時間、潤濕角、界面張力與界面反應的活化能則會減少。在界面反應方面,鎵含量低於0.5wt%之五元銲錫與銅基材反應會在界面生成Cu5Zn8、AgZn3與Al4.2Cu3.2Zn0.7介金屬化合物,而當鎵含量達到0.5wt%,則CuZn5會在Cu5Zn8與AgZn3之間生成。經過高溫150℃時效後,界面的Al4.2Cu3.2Zn0.7與CuZn5與介金屬化合物則均會轉變成Cu5Zn8化合物,而隨著時效時間增加至1000小時,AgZn3化合物也會消失,且銀會固溶在Cu5Zn8化合物內。由於銲錫內鋅的消耗使錫會往界面擴散並在銲錫與基材的界面生成Cu6Sn5化合物。添加鎵也會使Cu5Zn8化合物厚度增厚,並在時效1000小時後在IMC與銲錫之間出現一條連續的裂縫。
熱重分析(Thermal Gravimetric Analysis,TGA)的結果顯示,銲錫在250℃純氧的環境下,增加鎵含量,可以增進Sn-8.5Zn-0.5Ag-0.1Al-xGa銲錫的抗氧化性。本實驗利用聚焦離子束(Focus Ion Beam,FIB)加工,觀察銲錫的橫截面發現氧化層的厚度約30~100 nm,並可以發現鎵含量較低(0.05wt%)銲錫的氧化層較不緻密,有孔洞的存在,而隨著銲錫鎵含量的增加,五元銲錫(2wt%Ga)則會生成緻密的氧化層。從歐傑(Auger Electron Spectroscopy,AES)表面、歐傑縱深分析與薄膜XRD等分析得知,五元銲錫生成的氧化物為ZnO,而鋁與鎵則會傾向往銲錫表面聚集。
This study investigated the addition of Ga to improve the properties of Sn-Zn series Pb-free solders. Our laboratory had been awarded the patent of Sn-8.55Zn-0.5Ag-0.45Al-0.5Ga solder. But the role of Ga in solder was not understood clearly. Therefore, this work investigated the effect of Ga on thermal, mechanical and wetting properties of Sn-Zn-Ag-Al containing solders.
The microstructure of Sn-8.5Zn-0.5Ag-0.1Al-xGa (x=0.05~2wt%) solder consists of needle Zn-rich phase and dendritic AgZn3 compound distributed in the Sn matrix. The addition of Ag results in the conversion of the eutectic structure. The results of EPMA analysis indicated that Ga dissolves in Sn matrix as well as in Zn-rich phases, while Al may segregate at grain boundary of β-Sn. The results of DSC (Differential Scanning Calorimetry) analysis reveal that the increase in the Ga% from 0.05% to 2% will lowers the solidus temperature of the solder from 197oC to 183oC and expand the two phase region as well. It is noteworthy that a shoulder can be seen in the DSC curve at higher Ga contents, indicating the formation of hypoeutectic structure. The results of mechanical test showed that with an increase in Ga content up to 1wt% will improve the average tensile strengths and total elongation of the solder. Yet, the total elongation of solders drops from 42% to 20% when Ga content increases from 1 to 2wt%. The facture surface morphology indicates that all the specimens exhibit a ductile dimple pattern.
The investigation of wetting behavior indicates that wetting time and wetting angle decreased while the wetting force increases with an increase in Ga content. The intermetallic compounds formed at the interface after wetting experiment were Al4.2Cu3.2Zn0.7, Cu5Zn8 and AgZn3 in the solder of lower Ga contents, while the CuZn5 forms between Cu5Zn8 and AgZn3 when the composition of Ga approaches 0.5wt%. The aging treatment at 150℃ converts the Al4.2Cu3.2Zn0.7 and CuZn5 compound to Cu5Zn8. The AgZn3 was decomposed and Ag dissolves in Cu5Zn8 after aging for 1000 hours. Addition of Ga into the solder also increases the thickness of Cu5Zn8 compound. Long time aging results in the formation of voids and consequently cracks between IMC and solder.
The results of Thermogravimetric Analysis under O2 atmosphere at 250°C show that an increase in Ga content enhances the oxidation resistance of Sn-8.5Zn-0.5Ag-0.1Al-xGa lead-free solders. The cross sectional investigation of solder surface with the aid of focus ion beam (FIB) shows that the thickness of oxidation layer was about 30~100 nm. The oxidation layer was found to be porous at low Ga content. The surface oxide layers were further examined by Auger electron spectroscopy (AES) and thin-film XRD to show that the oxide layer formed was ZnO with the segregation of Al and Ga.
1. M. R. Pinnel and W. H. Knausenberger, “Interconnection System Requirements and Modeling”, AT&T Tech. Journal, Vol.66, No. 4, pp. 45~46, 1987.
2. 張世明, 吳文騰, 李育奇, “微凸塊接合技術”, 電子發展月刊, 第172期, pp. 2~11, 1992.
3. 楊省樞, “概觀未來晶圓之包裝”, 電子發展月刊, 第152期, pp. 65~71, 1990.
4. 林宏明譯, “非打線式接合法之技術動向”, 電子發展月刊, 第136期, pp. 46~54, 1989.
5. S. Y. Kang, P. M. Williams, T. S. Mclaren and Y. C. Lee, “Studies of Thermosonic Bonding for Flip-chip Assembly”, Materials Chemistry and Physics, Vol. 42, No. 1, pp. 31~37, 1995.
6. A. Schubert, R. Dudek, H. Walter, E. Jung, A. Golhardt, B. Michel and H. Reichl, “Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints”, Proceedings-Electronic Components and Technology Conference, pp. 1246~1255, 2002.
7. J. Baliga, “Flip-Chip Packaging: Prepare For the Ramp-up”, Semiconductor International, Vol. 21, No. 3, p. 87, 1998.
8. J. H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York. USA, Chapter 1, 1996.
9. M. Pecht, “Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines”, John Wiley & Sons, New York, USA, Chapter 7, 1994.
10. H. Reid, D. Moynihan, J. Leiberman, and B. Bradley, “Toxic Lead Reduction Act of 1990”, S-2638, 1990.
11. P. T. Vianco and D. R. Frear, “Issue in the Replacement of Lead-Bearing Solders”, Journal of the Minerals, Metals and Materials Society, Vol.45, No. 7, pp. 14~19, 1993.
12. K. Seelig, “Study of Lead-Free Solder Alloys”, Circuits Assembly, Vol. 6, No. 10, pp. 46~48, 1995.
13. C. Melton, “Alternative of Lead-Bearing Solder Alloys”, Proceeding of the 1993 IEEE International Sympocium on Electronics and the Environment, Arlington, Virginia, USA, pp. 94~97, 1993.
14. D. M. Jacobson and M. R. Harrison, “Lead-Free Soldering:A Progress Report”, The GEC Journal of Technology, Vol. 14, No. 2, pp. 98~109, 1997.
15. P. Biocca, “Global Update on Lead-Free Solders”, Surface Mount Technology, pp. 64~67, 1999.
16. N. C. Lee, “Getting Ready for Lead-Free Solders”, Soldering &Surface Mount Technology, No. 26, pp. 65~69, 1997.
17. J. W. Han, H. G. Lee and J. Y. Park, “Numerical Simulation of Dynamic Wetting Behavior in the Wetting Balance Method”, Materials Transactions, Vol. 43, No. 8, pp. 1816~1820, 2002.
18. F. Guo, S. Choi, J. P. Lucas and K. N. Subramanian, “Effects of Reflow on Wettability, Microstructure and Mechanical Properties in Lead- Free Solders”, Journal of Electronic Materials, Vol. 29, No. 10, pp. 1241~1248, 2000.
19. T. Takemoto and M. Miyazaki, “Effect of excess temperature above liquidus of lead-free solders on wetting time in a wetting balance test”, Material Transaction, Vol. 42, No. 5, pp.745~750, 2001.
20. 詹益淇, 莊東漢, “無鉛銲錫的回顧與最新發展”, 電子月刊, 6, pp. 226~237, 2000.
21. M. E. Loomans, S. Vaynman, G. Ghosh and M. E. Fine, “Investigation of Multi-Component Lead-free Solders”, Journal of Electronic Materials, Vol. 23, No. 8, pp.741~746, 1994.
22. M. McCormack and S. Jin, “Improved Mechanical Properties in New, Pb-free Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 715~720, 1994.
23. E. P. Wood and K. L. Nimmo, “In search of new lead-free electronic solders”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 709~713, 1994.
24. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-free, Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 687~690, 1994.
25. F. Hua and J. Glazer, “Lead-free Solders for Electronic Assembly, Design and Reliability of Solders and Solder Interconnections”, in: Design and Reliability of Solders and Solder Interconections, R. K. Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Murty, W. L. Winterbottom (Eds.), The Minerals, Metals and Materials Society, pp. 65~74, 1997.
26. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott and D. W. Finley, “Wave soldering with a low melting point Bi-Sn alloy: effects of soldering temperature and circuit board finishes”, Journal of Electronic Materials, Vol. 25, No. 7, pp. 1128~1131, 1996.
27. U. R. Kattner and W. J. Boettinger, “On the Sn-Bi-Ag Ternary Phase Diagram”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 603~610, 1994.
28. K. Seelig, “A Study of Lead-free Solder Alloys”, Circuits Assembly, Vol. 6, No. 10, pp. 46~48, 1995.
29. P. M. Hamsen, R. P. Elliott and F. A. Shunk, “Constitution of Binary Alloys”, McGraw-Hill, New York, 1958
30. C. M. Miller, I. E. Anderson and J.F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 595~601, 1994.
31. C. Y. Liu, C. H. Lai, M. C. Wang and M. H. Hon, “Thermal behavior and microstructure of the intermetallic compounds formed at the Sn-3.5Ag-0.5Cu/Cu interface after soldering and isothermal aging”, Journal of Crystal Growth, 290, pp. 103~110, 2006.
32. W. Yang, L. E. Felton and R.W. Messler. Jr, “The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints”, Journal of Electronic Materials, Vol. 24, p. 1465, 1995.
33. K. Suganuma, “Interfacial Phenomena in Lead-free Soldering”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, pp. 620~625, 1999.
34. D. Rflander, E. G. Jacobs, and R. Fpinizzotto, “Activation Energies of Intermatallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, Journal of Electronic Materials, Vol. 26, No. 7, pp. 883~887, 1997.
35. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T. Tainigauchi and K. Tadayma, “Development of New Pb-Free Solder Alloy”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, pp. 21~24, 1999.
36. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T. Tainigauchi and K. Tadayma, “Development of Lead-Free Solder Alloys of the Ge Doped Sn-Ag-Bi system”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, pp.606~609, 1999.
37. L. Ye, Z. Lai, J. Liu, and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron”, 1999 International Symposium on Advanced Packaging Materials, pp. 262~267, 1999.
38. Y. Kariya and M. Otsuka, “Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu and In) solder alloys”, Journal of Electronic Materials, Vol. 27, p. 1229, 1998.
39. M. Nishiyra, A. NaKayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical Strength and Mocirstructure of BGA Joints Using Lead-free Solders”, Materials Transactions, Vol. 43, No. 8, pp. 1802~1807, 2002.
40. Z. Mei and J. W. Morris, Jr., “Characterization of Eutectic Sn-Bi Solder Joints”, Journal of Electronic Materials, Vol. 21, No. 6, pp. 599~607, 1992.
41. C. H. Raeder, L. E. Felton, V. A. Tanzi and D. B. Knorr, “The Effect of Aging on Microstructure, Room Temperature Deformation, and Fracture of Sn-Bi/Cu Solder Joints”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 611~617, 1994.
42. L.E. Felton, C. H. Raeder and D. B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, Journal of the Minerals, Metals and Materials Society, Vol. 45, No. 7, pp. 28~32, 1993.
43. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 709 ~713, 1994.
44. M. F. Arenas and V. L. Acoff, “Contact Angle Measurements of Sn-Ag and Sn-Cu Lead-free Solders on Cu Substrates”, Journal of Electronic Materials, Vol. 33, No. 12, pp. 1452 ~1458, 2004.
45. E. P. Lopez, P. T. Vianco and J. A. Rejent, “Solderability Testing of 95.5Sn-3.9Ag-0.6Cu Solder on Oxygen-Free High-Conductivity Copper and Au-Ni-Plated Kovar”, Journal of Electronic Materials, Vol. 32, No. 4, pp. 254 ~260, 2003.
46. M. McCormack and S, Jin, “Progress in the design of new Lead-free solder alloys”, Journal of the Minerals, Metals and Materials Society, July, p. 36, 1993.
47. J. W. Morris, Jr. and J.L. F. Goldstein. “Effect of Substrate on the Microstructure and Ceep of Eutectic In-Sn”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 25, No. 12. pp. 2715~2722, 1994.
48. M. McCormack, H. S. Chen, G. W. Kamlott and S. Jin, “Significantly Improved Mechanical-Properties of Bi-Sn Solder Alloys by Ag-Doping”, Journal of Electronic Materials, Vol. 26, No.8, pp. 954~958, 1997.
49. M. Abtew and G. Selvaduray, “Lead- free Solder in Microelectronics”, Materials Science and Engineering. R, Vol. 27, No. 5-6, pp.95~141, 2000.
50. S. Vaynman and M. E. Fine, “Flux Development for Lead-free Solders Containing Zinc”, Journal Electronic Materials, Vol. 29, No. 10, pp. 1160 ~1163, 2000.
51. H. Okamoto and T. B. Massalski, “Binary Alloy Phase Diagram”, New York : ASM, 1986.
52. H. M. Lee, S. W. Yoon and B. J. Lee, “Thermodynamic prediction of Interface Phases at Cu/ Solder Joints”, Journal of Electronic Materials, Vol. 27, No. 11, pp. 1161~1166, 1998.
53. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering. R, Vol. 38, No. 2, pp. 55~105, 2002.
54. K. Suganuma, T. Murata, H. Noguchi and Y. Toyoda, “Heat Resistance of Sn-9Zn Solder/Cu Interface with or without Coating”, Journal of Materials Research, Vol. 15, No. 4, pp. 884~891, 2000.
55. M. Date, T. Shoji, M. Fujiyoshi, K. Sato and K. N. Tu, “Ductile-to-brittle Transition in Sn-Zn solder Joints Measured by Impact Test”, Scripta Materialia, Vol. 51, No. 7, pp. 641~645, 2004.
56. K. Suganuma, “Advances in lead-free electronics solderings”, Current Opinion in Solid State and Materials Science, Vol. 5, No. 1, pp. 55~64, 2001.
57. Y. Chonan, T.Komiyama, J. Onuki and R. Urao, “Influence of P Content in Electroless Plated NP Alloy Film on Interfacial Structures and Strength between Sn-Zn Solder and Plated Au/Ni-P Alloy Film”, Materials Transactions, Vol. 43, No. 8, pp. 1887~1890, 2002.
58. T. Taguchi, R. Kato and S. Akita, “Lead-free Interfacial Structures and Their Relationship to Au Plating Including Accelerated Thermal Cycle Testing of Non-leaden BGA Spheres”, Electronic Components and Technology Conference, 2001 Proceedings 51st, Orlando, pp. 675-680, 2001.
59. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-free, Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, Vol. 23, No. 7, pp. 687~690, 1994.
60. M. Hirata, H. Noguchi and H. Yoshida, Matsushita Technical Journal, Vol. 45, No. 3, pp. 82~87, 1999.
61. N.C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, Vol. 9, pp. 65~69, 1997.
62. T. Taketomo, T. Funaki and A. Mastsunawa, Quarterly Journal of the Japan Welding Society, Vol. 17, No. 2, pp. 251~258, 1999.
63. H. P. Marius and H. Hildegard, “Aluminium-Tin-Zinc”, Ternary Alloy, Vol. 8, VCH Verlagsgesells Chaft, Weinheim, FGR, pp. 381~388, 1993.
64. C. W. Huang and K. L. Lin, “Wetting Properties of and Interfacial Reactions in Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au Layer”, Materials Transactions, Vol. 45, No.2, pp. 588~594, 2004.
65. K. L. Lin, L. H. Wen and T. P. Liu, “The microstructure of the Sn-Zn-Al solder alloys”, Journal of Electronic Materials, Vol. 27, p. 97, 1998.
66. H. E. Twnsend and J. C. Zoccola, “Atmospheric corrosion resistance of 55% Al-Zn coated sheet steel: 13 year test results”, Mattel Performance, Vol. 18 (10), p. 13, 1979.
67. O. Ikuo and O. Hiroshi, Proceedings of the Annual Convention of the Wire Association International, Published by Wire Assoc. Int. Inc., Guilford, CT, USA, pp. 81~91, 1990.
68. C. M. Chuang, T. S. Lui and L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aged Sn-9Zn Eutectic Solder”, Journal of Materials Science, Vol. 37, No. 1, pp. 191~195, 2002.
69. L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, “Interfacial Reaction in Molten Sn/Cu and Molten In/Cu Couples”, Matallurgical and Materials Transactions B, Vol. 28, No. 5, pp. 927~934, 1997.
70. J. W. Yoon and S. B. Jung, “Interfacial Reactions between Sn-0.4Cu Solder and Cu Substrate during Reflow Reaction”, Journal of Alloys and Compounds, Vol. 396, No. 1, pp. 122~127, 2005.
71. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, pp. 217~223, 1996.
72. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Materialia, Vol. 43, pp. 329~337, 1995.
73. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Matallurgica, Vol. 30, No. 5, pp. 947~952, 1982.
74. R. A. Gaqliano and M. E. Fine, “Thickening Kinetics of Interfacial Cu6Sn5 and Cu3Sn Layers during Reaction of Liquid Tin with Solid Copper”, Journal of Electronic Materials, Vol. 32, No. 12, pp. 1441~1447, 2003.
75. L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, “Interfacial Reactions in Molten Sn/Cu and Molten In/Cu couples”, Matallurgical and Materials Transactions B, Vol. 28B, No. 5, pp. 927~934, 1997.
76. P. T. Vianco, K. L. Erickson, and P.L. Hopkins, “Solid State Intermetallic Compound Growth Between Copper and High Temperature, Tin-rich Solders”, Journal of Electronic Materials, Vol. 23, No. 8, pp. 721~727, 1994.
77. S. Sommadossi, W. Gust, E. J. Mittemeijer, “Characterization of the reaction process in diffusion-soldered Cu/In-48 at% Sn/Cu joints”, Materials Chemistry and Physics, Vol. 77, pp. 924~929, 2002.
78. A. Hayashi , C. R. kao, and Y. A. Chang, ”Reactions of Solid Copper with Pure Liquid Tin and Liquid Tin Saturated with Copper”, Scripta Materialia, Vol. 37, No.4, pp. 393~398, 1997.
79. S. K. Kang and V. Ramachandran, “Growth Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface” Scripta Metallurgica, Vol. 14, pp. 421~ 424, 1980.
80. S. W. Yoon, W. K. Choi and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder alloys”, Scripta Materialia, Vol. 40, No. 3, Jan. pp. 297~302, 1999.
81. G. Leonida, “Handbook of Printed Circuit Design, Manufacture, Components & Assembly”, Ayr, Scotland, Chap. 5-6, 1981.
82. H.Y. Chang, S.W. Chen, S.H. Wong and H.F. Hsu, “Determination of reactive wetting properties of Sn, Sn-Cu, Sn-Ag, and Sn-Pb alloys using a wetting balance technique”, Journal of Materials Research, Vol. 18, No. 6, pp. 1420~1428, 2003.
83. K. L. Lin and T. P. Liu, “High- trmperature Oxidation of A Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 5, No. 3-4, pp. 255~267, 1998.
84. K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys - the Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10, pp. 1111~1116, 2003.
85. A. Z. Miric and A. Girusd, “Lead-free Alloys”, Soldering & Surface Mount Technology, Nol. 10, No. 1, pp. 19~25, 1998.
86. K. Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, Vol. 13, No. 10, pp. 2859~2865, 1998.
87. J. Glazer, “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, Internationals Materials Reviews, Vol. 40, No. 2, pp. 65~92, 1995.
88. R. Hultgren, “Selected Values of the Thermodynamic Properties of Binary Alloys Part Ι”, American Socirty for Metals, Ohio, 1973.
89. J. F. Shackelford, “Introduction to Materials Science for Engineering, 2nd ed”, Macmillan publishing company, New York, p. 690, 1998.
90. C. W. Huang and K. L. Lin, “Microstructure and Mechanical Properties of Sn-8.55Zn-0.45Al-XAg Solders”, Journal of Materials Research, Vol. 18, No. 7, pp. 1528~1534, 2003.
91. C. B. Lee, S, B. Jung, Y. E. Shin and C. C. Shur, “Effect of Isothermal Aging on Ball shear Strength in BGA Joints with Sn-3.5Ag-0.75Cu Solder”, Materials Transactions, Vol. 43, No.8, pp. 1858~1863, 2002.
92. H. M. Lee, S. W. Yoon and B. J. Lee, “Thermodtnamic Prediction of Interface Phases at Cu/Solder Joints”, Journal of Electronic Materials, Vol. 27, No. 11, pp. 1161~1166, 1998.
93. R. Hultgren, “Selected Values of the Thermodynamic Properties of Binary Alloys Part ΙΙ”, American Socirty for Metals, Ohio, 1973.
94. C. H. Yu and K. L. Lin, “Early dissolution behavior of copper in a molten Sn-Zn-Ag solder”, Journal of Materials Research, Vol. 20, No. 3, pp. 666~671, 2005.
95. James F. Shackelford, William Alexander, and Jun S. Park, “Materials science and engineering handbook”, Boca Raton : CRC Press, 1994.
96. S. C. Cheng and K. L. Lin, “The thermal property of lead-free Sn-8.55Zn-1Ag-xAl solder alloys and their wetting interaction with Cu”, Journal of Electronic Materials, Vol. 31, pp. 940~945, 2002.
97. D. G. Kim, S. B. Jung, “Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate”, Journal of Alloys and Compounds. Vol. 386, pp. 151~156, 2005.
98. C. Y. Lee, K. L. Lin, “Preparation of solder bumps incorporating electroless nickel-boron deposit and investigation on the interfacial interaction behaviour and wetting kinetics”, Journal of Materials Science-Materials Electronics, Vol. 24, pp. 377~383, 1997.
99. J. M. Song, P.C. Liu, C. L. Shih, and K.L. Lin, “Role of Ag in the formation of interfacial intermetallic phases in Sn-Zn soldering”, Journal of Electronic Materials, Vol. 34, pp. 1249~1254, 2005.
100. G. Petzow and G. Effenberg, “Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams”, Weinheim; VCH, New York, 1998.
101. I. Barin, “Thermochemical Data of Pure Substances”, Vol. 2, New York: VCH, p. 1549, 1995.
102. R. N. Lyon, “Liquid-Metals Handbook”, Washington: U.S. Govt. Print. Office, , p. 40, 1954.