簡易檢索 / 詳目顯示

研究生: 吳奇臨
Wu, Chi-Lin
論文名稱: 以非平衡態分子動力學探討奈米碳管非局部效應及石墨烯同調傳輸
The Atomistic Study on Nonlocal Effect in Carbon Nanotube and Coherence Transport in Graphene using Non-Equilibrium Molecular Dynamics Simulations
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 103
中文關鍵詞: 非平衡態分子動力學非局部效應同調傳輸
外文關鍵詞: Non-Equilibrium Molecular Dynamics, Nonlocal Effect, Coherence Transport
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以非平衡態分子動力學模擬方法,探討奈米碳管的非局部效應及石墨烯的同調傳輸。於非局部效應,首先改變控溫層沿圓周方向的範圍及軸向長度,藉此探討其對非局度效應的影響,接著改變結構長度,探討其對非局度效應的影響,並探討非局部效應與異常型傳輸之間的關聯性。於同調傳輸,首先製作圓孔聲子晶體,改變其單位晶格尺寸觀察同調傳輸現象,並改變結構長度、系統溫度及製造缺陷,探討長度、溫度、缺陷效應對同調傳輸的影響,最後改變空孔的幾何形狀及排列方式,探討其對同調傳輸的影響。
    於非局部效應,發現固定控溫層軸向的長度,改變其圓周方向覆蓋的面積,當面積越大非局部效應越小。另外固定控溫層的範圍,非局部效應將隨著結構長度增長有下降的趨勢,最終非局部效應趨近於0,但發現當非局部效應消失時系統依然屬於異常型傳輸。於同調傳輸,發現圓孔聲子晶體存在同調傳輸現象,且由縱向模態0-8THz的聲子貢獻,但當結構長度過短或過長時則無法觀察此現象。另外發現些微的缺陷對熱傳導係數與同調傳輸有劇烈的影響,最後發現不規則排列的聲子晶體也能抑制同調傳輸。

    The purpose of the study was to explore the nonlocal effects in carbon nanotubes (CNTs) and the coherent transport in graphene by using non-equilibrium molecular dynamics simulation method.
    In the study of nonlocal effect in CNT, the coverage area along the circumferential direction and axial length of the temperature control slab was varied to explore their effects on nonlocal effect. The effect of CNT length was also examined. The correlation between the nonlocal effect and anomalous transport was discussed. In the study of coherent transport in graphene, phononic crystal of circular holes were created, and the length of unit cell was varied to explore the phenomenon of coherent transport. The length and the defects of the structure, the temperature of the system were varied to explore their effects on the coherent transport. Then, the effect of the shape and the arrangement of the holes were also examined.
    In the study of nonlocal effect in CNT, it was found that the larger the coverage area of the temperature control slab was, the smaller the nonlocal effect was. As the length of CNT increased, the nonlocal effect tend to decreased, and eventually the nonlocal effect disappeared, but anomalous transport still existed. In the study of coherent transport in graphene, it was found that coherent transport existed in phononic crystal of circular holes, which is caused by longitudinal mode phonons within 0-8THz frequency range. However, this phenomenon could not be observed if the length of the structure was too short or too long. In addition, a few defects would cause a dramatic impact on coherent transport made thermal conductivity drop seriously. Finally, it was found that phononic crystals of irregular arrangement could also suppress coherent transport.

    目錄 摘要 I Extended Abstract II 誌謝 XXII 表目錄 XXVI 圖目錄 XXVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.2.1 非局部效應 1 1.2.2 同調傳輸 2 1.3 論文架構 4 第二章 理論與方法 5 2.1 分子動力學理論 5 2.1.1 基本理論 5 2.1.2 勢能函數 5 2.1.3 邊界條件 8 2.1.4 系綜觀念 9 2.1.5 控溫器 10 2.1.6 初始條件 11 2.2 有限差分法及表列法 12 2.2.1 Velocity-Verlet演算法 13 2.2.2 表列法 13 2.3 在分子動力學中計算熱傳導的方法 15 2.4 分析方法 16 2.4.1 聲子相關性 16 2.4.2 色散曲線 17 第三章 奈米碳管非局部效應 22 3.1 非局部效應模型與溫度配置 22 3.1.1 穩定溫度源模型之設置 22 3.1.2 穩定熱流源模型之設置 23 3.2 模擬流程 24 3.3 穩定溫度源之結果與討論 25 3.3.1 控溫層長度對非局部效應影響 25 3.3.2 控溫層範圍對非局部效應影響 26 3.3.3 應變對非局部效應影響 27 3.4 穩定熱流源之結果與討論 28 第四章 石墨烯同調傳輸分析 45 4.1 石墨烯同調傳輸 45 4.2 石墨烯模型 45 4.2.1 圓孔聲子晶體模型 45 4.2.2 溫度與長度效應之聲子晶體模型 46 4.2.3 具有缺陷之圓孔聲子晶體模型 46 4.2.4 幾何形狀效應之聲子晶體模型 46 4.3 模擬流程 47 4.4 結果與討論 48 4.4.1 同調傳輸 48 4.4.2 長度與溫度效應對同調傳輸的影響 51 4.4.3 缺陷對同調傳輸的影響 53 4.4.4 幾何形狀對同調傳輸的影響 55 第五章 結論 90 5.1 非局部效應 90 5.2 石墨烯同調傳輸效應 90 5.3 未來展望 91 參考文獻 92 附錄A 96

    參考文獻
    [1] C.-W. Chang," Nonlocal thermal conduction of one-dimensional materials,"The 3rd Asian Conference on Thermoelectrics, Center for Condensed Matter Science, National. Taiwan University, Taipei 10617, Taiwan, 2018
    [2] S. Chakraborty, C. A. Kleint, A. Heinrich, C. M. Schneider, J. Schumann, M. Falke, and S. Teichert," Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111)," Applied Physics Letters, vol. 83, p. 20, 2003.
    [3] J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese and J. R. Heath, " Reduction of thermal conductivity in phononic nanomesh structures," Nature Nanotechnology, vol. 5, pp. 718–721, 2010
    [4] P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson III, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. E. Kady, " Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning,"Nano Letter, vol. 11, pp. 107–112, 2011
    [5] M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, Z. Ren, E. A. Fitzgerald, G. Chen, "Coherent Phonon Heat Conduction in Superlattices," Science, vol. 338, pp. 936-939, 2012
    [6] N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri . and I. J. Maasilta, " Engineering thermal conductance using a two-dimensional phononic crystal," Nature Communication, vol. 5, p. 3435, 2014
    [7] J. Ravichandran, A. K. Yadav, R. C., P. B. Rossen, A. Soukiassian, S. J. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, Y. Zhu, A. W. Lichtenberger, J. E. Moore, D.A. Muller, D. G. Schlom, P. E. Hopkins , A. Majumdar, R. Ramesh, and M. A. Zurbuchen. " Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices," Nature Materials, vol. 13, pp. 168-172, 2014
    [8] M. R. Wagner, B. Graczykowski, J. S. Reparaz, A. E. Sachat, M. Sledzinska, F. Alzina, and C. M. S. Torres, "Two-Dimensional Phononic Crystals:Disorder Matters," Nano Letter, vol. 16, pp. 5661-5668, 2016
    [9] J. Maire, R. Anufriev, R. Yanagisawa, A. Ramiere, S. Volz, M. Nomura, "Heat conduction tuning by wave nature of phonons," Science Advances, vol. 3, no. 8, p. 1700027, 2017
    [10] T. Zhu and E. Ertekin, "Phonon transport on two-dimensional graphene/boron nitride superlattices," Physical Review B, vol. 90, p. 195209, 2014,
    [11] X. Mu, T. Zhang, D. B.Go, T. Luo, " Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices," Carbon, vol. 83, pp. 208-216, 2015
    [12] L. Yang, J. Chen, N. Yang, B. Li, " Significant reduction of graphene thermal conductivity by phononiccrystal structure," International Journal of Heat and Mass Transfer, vol. 99, pp. 428-432, 2015
    [13] T. Feng, X. Ruan, " Ultra-low thermal conductivity in graphene nanomesh," Carbon, vol. 101, pp. 107-113, 2016,
    [14] X. Wang, M. Wang, Y. Hong, Z. Wang and J. Zhang, " Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice ," Physical Chemistry Chemical Physics, vol. 19, pp. 24240-24248, 2017
    [15] S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, "Randomness-Induced Phonon Localization in Graphene Heat Conduction," Journal of Physical Chemistry Letters, vol. 9, pp. 3959-3968, 2018
    [16] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics. I. General Method,"The Journal of Chemical Physics, vol. 31, pp. 459-466, 1959.
    [17] L. Lindsay and D. A. Broido, "Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene," Physical Review B, vol. 81, p. 205441, 2010.
    [18] J. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods," Computers in Physics, vol. 7, p. 625, 1993.
    [19] T. Dumitrica, "Trends in Computational Nanomechanics: Transcending Length and Time Scales," Springer Science & Business Media, 2010.
    [20] P. H. Hünenberger, "Thermostat Algorithms for Molecular Dynamics Simulations," Advanced Computer Simulation: Approaches for Soft Matter Sciences, I, vol. 173, pp. 105-147, 2005.
    [21] G. Bussi, D. Donadio, and M. Parrinello, "Canonical sampling through velocity rescaling," The Journal of Chemical Physics, vol. 126, p. 014101, 2007.
    [22] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, pp. 1695-1697, 1985.
    [23] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of Chemical Physics, vol. 81, pp. 511-519, 1984.
    [24] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," The Journal of Chemical Physics, vol. 81, pp. 3684-3690, 1984.
    [25] S. A. Adelman and J. D. Doll, "Generalized Langevin equation approach for atom/solid‐surface scattering: General formulation for classical scattering off harmonic solids," The Journal of Chemical Physics, vol. 64, pp. 2375-2388, 1976.
    [26] T. Schlick, "Molecular modeling and simulation: an interdisciplinary guide: an interdisciplinary guide," Springer Science & Business Media, 2010.
    [27] T. Schneider and E. Stoll, "Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions," Physical Review B, vol. 17, pp. 1302-1322, 1978.
    [28] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules," Physical Review, vol. 159, pp. 98-103, 1967.
    [29] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
    [30] B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, pp. 430-432, 1973.
    [31] T. N. Heinz and P. H. Hünenberger, "A fast pairlist-construction algorithm for molecular simulations under periodic boundary conditions," Journal of Computational Chemistry, vol. 25, pp. 1474-1486, 2004.
    [32] D. Frenkel and B. Smit, "Understanding Molecular Simulation, Second Edition: From Algorithms to Applications," San Diego: Academic, 2002.
    [33] J. P. Hansen and I. R. McDonald, "Theory of Simple Liquids," London: Academic, 1986.
    [34] K. C. Fang, C. I. Weng, and S. P. Ju, "An Investigation into The Structural Features and Thermal Conductivity of Silicon Nanoparticles using Molecular Dynamics Simulations," Nanotechnology, vol. 17, pp. 3909-3914, 2006.
    [35] T. Ikeshoji and B. Hafskjold, "Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface," Molecular Physics, vol. 81, pp. 251-261, 1994.
    [36] P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Comparison of atomic-level simulation methods for computing thermal conductivity," Physical Review B, vol. 65, p. 144306, 2002.
    [37] J. Shiomi and S. Maruyama, "Molecular Dynamics of Diffusive-Ballistic Heat Conduction in Single-Walled Carbon Nanotubes," Nanotechnology, vol. 20, no.18, pp. 6, 2009.
    [38] Zhiping Xu and Markus J Buehler "Strain controlled thermomutability of single-walled carbon nanotubes," Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 2005-2009, 2008.
    [39] Xiaobo Li, Kurt Maute, Martin L. Dunn, and Ronggui Yang "Strain controlled thermomutability of single-walled carbon nanotubes," Physical Review B, vol. 81, no. 4, p 245318, 2010.

    [40] B.-W. Huang, T.-K. Hsiao, K.-H. Lin, D.-W. Chiou, and C.-W. Chang, "Length-dependent thermal transport and ballistic thermal conduction," AIP Advances, vol. 5, no. 5, p. 053202, 2015.
    [41] D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, " Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite" Applied Physics. Letters, vol. 47, no. 94, p. 203103, 2009.
    [42] Y. Wang, H. Huang, and X. Ruan, "Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers " Physical Review B, vol. 90, p. 165406, 2012.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE