| 研究生: |
李文智 Li, Wen-Chih |
|---|---|
| 論文名稱: |
顆粒碰撞及結塊過程數值模擬方法之研究 Simulation of Collision and Agglomeration Processes of Moving Particles |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 顆粒負載流 、顆粒碰撞 、結塊 |
| 外文關鍵詞: | Agglomeration, Inter-particle collision, Particle-laden flow |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般工程上的顆粒負載流需考量紊流場的影響,為了研究微小顆粒碰撞及結塊過程,本研究將問題簡化成於充滿靜止空氣之控制體積中加入週期性重力場以驅動顆粒運動,如此可避開流體力學因素對模擬結塊因素之影響。以乾燥的二氧化矽顆粒來進行吸附力模擬,其中考量Bradley接觸機制模式,並以Lennard-Jones模式估算碰撞過程中的吸附衝量。結塊模式的部分,以衍生硬球模式模擬結塊現象。顆粒間碰撞的部分,以雙體硬球碰撞模式模擬碰撞主導流,為了避免因顆粒分布不均勻造成多體碰撞,以平均絕對誤差和方均根測試顆粒於空間的均勻度,求得最佳的週期性重力場振幅常數,以發展顆粒間碰撞之結塊機制。
本研究設定碰撞主導流的模擬條件為顆粒體積佔有率0.0377、顆粒數為729、粒徑2 µm,模擬驗證週期性重力場常數500000 m/s2驅動顆粒的空間均勻度最佳,以此條件模擬碰撞及結塊現象,結塊數隨時間遽增,程式執行0.01秒後,結塊速率趨緩,執行至0.03秒累積的結塊數為518,剩餘的顆粒數為211;稀薄流的模擬條件為顆粒體積佔有率0.0009,其顆粒數、粒徑與碰撞主導流的設定相同,因為稀薄流的碰撞頻率小於碰撞主導流,稀薄流於程式執行0.03秒後,結塊數仍隨時間線性遞增;以週期性重力場常數5000 m/s2執行粒徑10 µm的結塊現象,其顆粒數、體積佔有率與粒徑2 µm的設定相同,模擬結果顯示以較小的週期性重力場驅動顆粒,造成顆粒間的相對速度小,亦會造成結塊現象。
Particle-laden flows are engaged with turbulence interactions, which are very complex in fluid dynamics. In order to investigate the collision and agglomeration processes for moving micro particles, a control volume in which the particles are driven by a periodic gravitational field in a quiescent environment is used in this study to avoid the complex fluid dynamics.
A contact mechanical model, Bradley model, is used to model cohesive force among dry silica particles. The Lennard-Jones model is used to evaluate the effect of the cohesive force in the collision process. In the agglomeration model, the extended hard-sphere model is used for simulation. To account for the inter-particle collisions, the binary hard-sphere collision model is used to simulate the collision-dominated flow.
In order to avoid multiple collisions among the particles, the spatial uniformity has been tested in terms of mean absolute error and root mean square. A model for the inter-particle process associated with agglomeration mechanism has been successfully developed.
Almohammed, N. and Breuer, M. (2016). Modeling and simulation of agglomeration in turbulent particle-laden flows: A comparison between energy-based and momentum-based agglomeration models. Powder Technology, 294, 373–402.
Auton, T. R., Hunt, J. C. R., and Prud’Homme, M. (1988). The force exerted on a body in inviscid unsteady non-uniform rotational flow. Journal of Fluid Mechanics, 197(1), 241.
Anh Ho, C. and Sommerfeld, M. (2002). Modelling of micro-particle agglomeration in turbulent flows. Chemical Engineering Science, 57(15), 3073–3084.
Bradley, S. (1936). The cohesion between smoke particles, Trans. Faraday Soc., 32, pp. 1088–1090.
Breuer, M. and Almohammed, N. (2015). Modeling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. International Journal of Multiphase Flow, 73, 171–206.
Chen, B.W. (2015). Simulation of micro-size particle motion with considering Cohesive Force between Particles.
Cooper, K., Gupta, A., and Beaudoin, S. (2001). Simulation of the adhesion of Particles to Surfaces. Journal of Colloid and Interface Science, 234(2), 284–292.
Cundall, P. A. (1979). A discrete numerical model for granular assemblies. Geotechnique.
Crowe, C. T., Sommerfeld, M., and Tsuji, Y. (2012). Multiphase Flows with Droplets and Particles. CRC Press New York.
Clift, R., Grace, J.R. and Weber, M.E. (1978). Bubbles Drops and Particles, Academic Press, San Diego, CA.
Czarnecki, J. and Dabroś, T. (1980). Attenuation of the van der Waals attraction energy in the particlesemi-infinite medium system due to the roughness of the particle surface. Journal of Colloid and Interface Science, 78(1), 25–30.
Derjaguin, B., Muller, V., and Toporov, Y. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53(2), 314–326.
Freitas, R. A. (1999). Nanomedicine, Volume I: Basic Capabilities (Vol. I), P276.
Heim, L.O., Blum, J., Preuss, M., and Butt, H.-J. (1999). Adhesion and Friction Forces between Spherical Micrometer-Sized Particles. Physical Review Letters, 83(16), 3328–3331.
Hjelmfelt, A. T. and Mockros, L. F. (1966). Motion of discrete particles in a turbulent fluid. Applied Scientific Research, 16(1), 149–161.
Hamaker, H. C. (1937). The London-van der Waals attraction between spherical particles. Physics, 4(10), 1058–1072.
Israelachvili, J. N. (2011). Intermolecular and Surface Forces: Third Edition. 254.
Johnson, K. L., Kendall, K., and Roberts, A. D. (1971). Surface Energy and the Contact of Elastic Solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 324(1558), 301–313.
Kosinski, P. and Hoffmann, A. C. (2011). Extended hard-sphere model and collisions of cohesive particles. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(3).
Kosinski, P. and Hoffmann, A. C. (2010). An extension of the hard-sphere particle-particle collision model to study agglomeration. Chemical Engineering Science, 65(10), 3231–3239.
Kosinski, P. and Hoffmann, A. C. (2009). Extension of the hard-sphere particle-wall collision model to account for particle deposition. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(6).
Maxey, M. R. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26(4), 883.
Rudinger, G. (1976). Fundamentals of Gas-Particle Flow. In Von Karman Inst. for Fluid Dynamic. Gas-Solid Suspensions. Retrieved from
Wadell, H. (1933). Sphericity and Roundness of Rock Particles. The Journal of Geology, 41(3), 310–331.