簡易檢索 / 詳目顯示

研究生: 楊于萱
Yang, Yu-Syuan
論文名稱: 隨機需求下之自駕車派遣管理策略之分析
Analysis of Dispatching Management Strategies for Autonomous Vehicles under Stochastic Demand
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 共享自駕車自動駕駛即時行動服務車輛派遣問題
外文關鍵詞: Shared autonomous vehicles, Autonomous Mobility on Demand, Vehicle dispatching problem
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,共享運具的興起,不僅能夠使閒置資源被利用,更能促進社會的發展。而自駕車也是當今最熱門的話題之一,既可以提高道路安全性,又能緩解交通擁塞、節約能源等。隨著共享運具和自駕車的蓬勃發展,也出現了新的商業模式——共享自駕車(SAV),並推動了許多地區加入智慧城市的進程。例如: Google的自駕車Waymo,自2020年起,開放美國鳳凰城的一般民眾使用全自動駕駛叫車服務。透過共享經濟的應用、自駕車技術的進步;藉由車輛派遣演算法的研究、派遣策略的優化,城市的運營效率和生產力得以提升。
    共享運具的概念和自駕車技術的結合可以提高社會運作的效率,因此,如何將旅客和共享自駕車進行有效率的分配,為值得探討的課題。考慮到需求的重要性,提供以需求為導向的服務——自動駕駛即時行動服務(AMoD),能夠提升服務品質。本研究中考慮了隨機需求模式下的共享自動駕駛汽車派遣問題,在自動駕駛即時行動服務的模式下,旅客可以在路網中的任意節點,透過行動裝置發送乘車需求,或者在物聯網叫車等候站中等待車輛。此物聯網車站能夠偵測到有乘客候車,並將自動將候車信息發送給車隊管理者。
    本研究旨在解決AMoD服務的派遣問題。通過開發車輛派遣策略演算法,來極小化旅客等待時間,以提升服務品質,並利用Python建構車輛派遣策略演算法的程式。本研究使用台南市中心作為研究範圍,在該區域的路網中,實驗四種的最佳化派遣策略,並觀察不同的情境設定,會如何影響車輛派遣的效率。並使用行為導向的微觀交通模擬軟體(MATSim),與本研究的車輛派遣演算法進行比較和驗證。透過數值實驗分析,找出最適的營運方式,預期提供政府部門或運營商相關建議,提高共享自駕車派遣效率,以因應智慧城市的浪潮。

    In recent years, the rise of shared mobility not only makes the use of idle resources but also promotes social development. The autonomous vehicle is also one of the hottest topics. It can improve road safety, relieve traffic jams, save energy. With the development of shared mobility and autonomous vehicle, a novel business model, shared autonomous vehicles (SAV) emerged. This promotes many cities joining in the process of the smart city. For example, Google's autonomous vehicle, Waymo, started to serve the public in Phoenix. Through the application of the sharing economy, the advancement of self-driving technology, the research of vehicle dispatching algorithms, and the development of dispatching strategies, the city's operational efficiency and productivity can be enhanced.
    The integration of carsharing and self-driving technology is promising in social efficiency. Therefore, how to assign vehicles and travelers efficiently is an important issue. Concerning the importance of demand, Autonomous Mobility on Demand (AMoD), a demand-oriented service, must upgrade the service quality. This research considers the shared autonomous vehicles (SAVs) dispatching problem under stochastic demand. In the AMoD service, travelers can submit requests on their mobile devices. Travelers can also wait at the IoT SAV stops which can detect the queue and send the information automatically to the SAV operator.
    This study aims to solve the dispatching problem for AMoD service. By developing formulations to minimize traveler's waiting time which represents service quality, and constructs the algorithm in python. This research conducts four dispatching strategies in the network of Tainan City Center and observes the efficiency under different scenarios. A microscopic, behavior-based traffic simulator (MATSim) is used to verify and compare with the dispatching algorithm of this study.
    According to the experiments, the optimal management set can be found. The expected contribution of this research is to furnish some suggestions that public sectors or operators can refer to promote vehicle dispatching efficiency, likewise, to respond to the wave of the smart city.

    ABSTRACT i 摘要 iii TABLE OF CONTENTS iv List of Table vii List if Figure viii CHAPTER 1 INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Research Objectives 3 1.3 Research Flow Chart 3 CHAPTER 2 LITERATURE REVIEW 6 2.1 Autonomous Vehicles 6 2.1.1 Development of Autonomous Vehicles 6 2.1.2 Sharing Economy and Shared Autonomous Vehicles 8 2.2 IoT application for Taxi Stops 9 2.3 Autonomous Mobility-on-Demand 10 2.3.1 Components of Autonomous Mobility-on-Demand 11 2.3.2 Approaches for Autonomous Mobility-on-Demand 12 2.4 Vehicle Dispatching Algorithm 13 2.5 Multi-Agent Transport Simulation 16 2.6 Summary 17 CHAPTER 3 RESEARCH METHODOLOGY 18 3.1 Problem Statement and Research Assumptions 18 3.2 Research Framework 22 3.3 Definition of the Variables and Parameters 24 3.4 SAV dispatching strategies 28 3.4.1 Strategy 1 29 3.4.2 Strategy 2 29 3.4.3 Strategy 3 32 3.4.4 Strategy 4 34 3.5 Dispatching Strategies 35 3.6 Simulation Dispatching Strategies in MATSim 37 3.6.1 The First-Come, First-Served Strategy in MATSim 37 3.6.2 The Assignment Strategy in MATSim 37 3.6.3 Summary of Simulation Dispatching Strategies in MATSim 38 CHAPTER 4 NUMERICAL ANALYSIS 40 4.1 Programming framework 40 4.2 Inputs description 43 4.2.1 Description of generating inputs 43 4.2.2 Parameters Setting 45 4.3 Simulation Flowchart 48 4.4 Experiment setup 50 4.5 Results of Experiments 57 4.5.1 Results of experiment I 58 4.5.2 Results of experiment II 59 4.5.3 Results of experiment III 62 4.5.4 Results of experiment IV 64 4.5.5 Results of experiment V 66 4.5.6 Results of experiment VI 69 4.6 Sensitivity Analysis 71 4.6.1 Sensitivity Analysis of Experiment IV 72 4.7 Summary 73 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 75 5.1 Conclusions 75 5.2 Suggestions 76 REFERENCES 78

    Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. Retrieved from https://www.sciencedirect.com/science/article/pii/S1389128610001568. doi:https://doi.org/10.1016/j.comnet.2010.05.010
    Botsman, R., & Rogers, R. (2010). Beyond zipcar: Collaborative consumption. Harvard business review, 88(10), 30.
    Burns, L. D. (2013). A vision of our transport future. Nature, 497(7448), 181-182. Retrieved from https://doi.org/10.1038/497181a. doi:10.1038/497181a
    Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transportation Research Part C: Emerging Technologies, 40, 1-13.
    Fagnant, D. J., Kockelman, K. M., & Bansal, P. (2015). Operations of shared autonomous vehicle fleet for Austin, Texas, market. Transportation Research Record, 2563(1), 98-106.
    Ford, H. J. (2012). Shared autonomous taxis: Implementing an efficient alternative to automobile dependency. Princeton University.
    Horni, A., Nagel, K., & Axhausen, K. W. (Eds.). (2016). The Multi-Agent Transport Simulation MATSim. London: Ubiquity Press. doi:https://doi.org/10.5334/baw
    Hyland, M., & Mahmassani, H. S. (2018). Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests. Transportation Research Part C: Emerging Technologies, 92, 278-297. Retrieved from https://www.sciencedirect.com/science/article/pii/S0968090X18306028. doi:https://doi.org/10.1016/j.trc.2018.05.003
    Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68.
    Krueger, R., Rashidi, T. H., & Rose, J. M. (2016). Preferences for shared autonomous vehicles. Transportation Research Part C: Emerging Technologies, 69, 343-355. Retrieved from https://www.sciencedirect.com/science/article/pii/S0968090X16300870. doi:https://doi.org/10.1016/j.trc.2016.06.015
    Lécureux, B., & Kaddoura, I. (2021). Sensitivity of the urban transport system to the value of travel time savings for shared autonomous vehicles: A simulation study. Procedia Computer Science, 184, 686-691. Retrieved from https://www.sciencedirect.com/science/article/pii/S1877050921007237. doi:https://doi.org/10.1016/j.procs.2021
    Leong Hin, Cheong. (2016). V2X Applications for Public Transport. http://itsasiapacific.com/pdf/LeongHinCheong.pdf
    Lo, Y. -T. (2020). A study on Autonomous Mobility-on-Demand fleet management. National Cheng Kung University, Retrieved from http://dx.doi.org/10.6844/NCKU202002239
    Maciejewski, M., Bischoff, J., & Nagel, K. (2016). An assignment-based approach to efficient real-time city-scale taxi dispatching. IEEE Intelligent Systems, 31(1), 68-77.
    Matzler, K., Veider, V., & Kathan, W. (2015). Adapting to the sharing economy. MIT Sloan Management Review, 56
    Oh, S., Seshadri, R., Azevedo, C. L., Kumar, N., Basak, K., & Ben-Akiva, M. (2020). Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore. Transportation Research Part A: Policy and Practice, 138, 367-388. Retrieved from https://www.sciencedirect.com/science/article/pii/S0965856420306133. doi:https://doi.org/10.1016/j.tra.2020.06.004
    Rossi, F., Zhang, R., Hindy, Y., & Pavone, M. (2018). Routing autonomous vehicles in congested transportation networks: Structural properties and coordination algorithms. Autonomous Robots, 42(7), 1427-1442.
    Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., & Pavone, M. (2014). Toward a Systematic Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A Case Study in Singapore. In G. Meyer & S. Beiker (Eds.), Road Vehicle Automation (pp. 229-245). Cham: Springer International Publishing.
    Wen, J., Nassir, N., & Zhao, J. (2019). Value of demand information in autonomous mobility-on-demand systems. Transportation Research Part A: Policy and Practice, 121, 346-359. Retrieved from https://www.sciencedirect.com/science/article/pii/S0965856418306785. doi:https://doi.org/10.1016/j.tra.2019.01.018
    Zachariah, J., Gao, J., Kornhauser, A., & Mufti, T. (2014). Uncongested mobility for all: A proposal for an area wide autonomous taxi system in New Jersey (No. 14-2373).

    無法下載圖示 校內:2026-09-11公開
    校外:2026-09-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE