| 研究生: |
廖宜靖 Liao, Yi-Chin |
|---|---|
| 論文名稱: |
新型雙離子材料作為陰極修飾層應用於高效率高分子發光二極體及太陽能電池 Novel Zwitterionic Molecules as Cathode Modification Layers toward Highly Efficient Polymer Light-Emitting Diodes and Solar Cells |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 高分子發光二極體 、高分子太陽能電池 、三辛烷基硫代甜菜鹼 、電子注入 、電子萃取 |
| 外文關鍵詞: | polymer light-emitting diode, polymer solar cell, trioctylsulfobetaine, electron injection/extraction |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用不同烷鏈長的新型雙離子分子,如三辛烷基硫代甜菜鹼(TOS)、三正十二烷基硫代甜菜鹼(TDS)等,作為光電元件之陰極修飾層,以溶液製程製作高效率高分子發光二極體(PLED)及太陽能電池(PSC)。
第一部份使用TOS作為PLED之電子注入層,並和小分子溴化四辛基銨(TOAB)比較,當以G-PF為發光層、鋁為電極時,和對照組TOAB/Al及Ca/Al元件相比,在7.0 V及2000 cd m-2下可以得到更高亮度及發光效率。因為TOS除了本身帶有分子偶極外,還會與鋁金屬交互作用產生界面偶極,增加電子注入能力,提升元件效能,使用XPS、UPS和KPFM證明其機制。為了解決TOAB在高溫不穩定的問題,以其結構為參考設計了小分子TOS,並以元件結果證明其熱穩定性,於高溫下仍保持效能。
為了展現雙離子小分子的多用性,在第二部分中作為PSC之電子萃取層,分析不同烷鏈長度的雙離子分子的電子萃取能力,發現同樣是TOS有最高的電子流密度。於是將TOS製作元件,當以PTB7-Th:PC71BM為主動層、鋁為電極時,功率轉換效率最高可達9.84% (PCEavg: 9.70%),和Ca/Al元件(PCEavg: 6.84%)相比,效率有42%的提升。
This work demonstrated highly efficient Polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs) with a series of novel zwitterionic molecules, including trioctylsulfobetaine (TOS), tridodecylsulfobetaine (TDS), and etc. as solution-processed interfacial layers. The TOS device was compared with the device using an effective electron injection material, tetraoctylammonium bromide (TOAB). The PLED device with the TOS/Al cathode showed the higher luminance (77535 cd m-2) and luminance efficiency (13.7 cd A-1) than that with TOAB/Al (52570 cd m-2, 11.8 cd A-1) and Ca/Al cathodes (38543 cd m-2, 5.0 cd A-1). The mechanism was proved by UPS and SKPM analysis. The temperature effect of both TOS and TOAB were studied through devices results , and showed that the device with TOS/Al cathodes still maintain high performance, while the TOAB/Al device decreased dramatically when increased to 100°C. Apart from the enhanced electron injection via TOS, TOS significantly improved the electron extraction and rendered the PSC device based on the active layer of PTB7-Th:PC71BM the high PCE of 9.84% (PCEavg: 9.70%). The PCE enhancement was 42%, compared to the Ca/Al device (PCEavg: 6.84%). This study provides a simple method to fabricate high performance PLEDs and PSCs by solution processing.
1. Y. Zhao, G. A. Meek, B. G. Levine and R. R. Lunt, Adv. Opt. Mater., 2, 606 (2014).
2. NREL chart, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, (accessed 04/20, 2016).
3. R. Mach and G. O. Mueller, Semicond. Sci. Technol., 6, 305 (1991).
4. M. Pope, H. Kallmann and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
5. R. H. Partridge, Polymer, 24, 755 (1983).
6. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
7. C. Tang, S. VanSlyke and C. Chen, J. Appl. Phys., 65, 3610 (1989).
8. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 347, 539 (1990).
9. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund and W. R. Salaneck, Nature, 397, 121 (1999).
10. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha and Z. V. Vardeny, Nature, 409, 494 (2001).
11. M. Reufer, M. J. Walter, P. G. Lagoudakis, A. B. Hummel, J. S. Kolb, H. G. Roskos, U. Scherf and J. M. Lupton, Nat Mater, 4, 340 (2005).
12. M. A. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson and S. Forrest, Nature, 395, 151 (1998).
13. 陳金鑫, 有機電激發光材料與元件, 五南圖書, 1 edn. (2005).
14. J. Tsukamoto, H. Ohigashi, K. Matsumura and A. Takahashi, Jpn. J. Appl. Phys., 20, L127 (1981).
15. G. Yu, C. Zhang and A. Heeger, Appl. Phys. Lett., 64, 1540 (1994).
16. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater., 13, 85 (2003).
17. S. So, W. Choi, C. Cheng, L. Leung and C. Kwong, Appl. Phys. A Mater. Sci. Process., 68, 447 (1999).
18. Y. Yang, E. Westerweele, C. Zhang, P. Smith and A. Heeger, J. Appl. Phys., 77, 694 (1995).
19. C. Wu, C. Wu, J. Sturm and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997).
20. Y. Cao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Synth. Met., 87, 171 (1997).
21. T. Brown, J. Kim, R. Friend, F. Cacialli, R. Daik and W. Feast, Appl. Phys. Lett., 75, 1679 (1999).
22. D. Kearns and M. Calvin, J. Chem. Phys., 29, 950 (1958).
23. C. W. Tang, Appl. Phys. Lett., 48, 183 (1986).
24. N. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 258, 1474 (1992).
25. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270, 1789 (1995).
26. H. Wu, F. Huang, J. Peng and Y. Cao, Org. Electron., 6, 118 (2005).
27. Q. Xu, J. Ouyang, Y. Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83, 4695 (2003).
28. Y. H. Niu, H. Ma, Q. Xu and A. K. Y. Jen, Appl. Phys. Lett., 86, 083504 (2005).
29. L. Hung, C. Tang and M. Mason, Appl. Phys. Lett., 70, 152 (1997).
30. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes and F. Cacialli, Appl. Phys. Lett., 77, 3096 (2000).
31. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern and M. Stößel, J. Appl. Phys., 89, 420 (2001).
32. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow and Y. Cao, Appl. Phys. Lett., 84, 3522 (2004).
33. Y. Cao, G. Yu and A. J. Heeger, Adv. Mater., 10, 917 (1998).
34. H. M. Lee, K. H. Choi, D. H. Hwang, L. M. Do, T. Zyung, J. W. Lee and J. K. Park, Appl. Phys. Lett., 72, 2382 (1998).
35. T. Mori, H. Fujikawa, S. Tokito and Y. Taga, Appl. Phys. Lett., 73, 2763 (1998).
36. C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Appl. Phys. Lett., 87, 241121 (2005).
37. J. Huang, Z. Xu and Y. Yang, Adv. Funct. Mater., 17, 1966 (2007).
38. Y. Li, D. Q. Zhang, L. Duan, R. Zhang, L. D. Wang and Y. Qiu, Appl. Phys. Lett., 90, 012119 (2007).
39. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 87, 013504 (2005).
40. J. H. Park, O. O. Park, J. W. Yu, J. K. Kim and Y. C. Kim, Appl. Phys. Lett., 84, 1783 (2004).
41. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu and C. T. Chung, Appl. Phys. Lett., 88, 113501 (2006).
42. T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T. Chung and C. I. Wu, Appl. Phys. Lett., 89, 05110 (2006).
43. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, C. I. Wu and C. T. Chung, Appl. Phys. Lett., 89, 053507 (2006).
44. T. H. Lee, J. C. Huang, G. L. v. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin and Y. J. Hsu, Adv. Funct. Mater., 18, 3036 (2008).
45. F. Huang, H. Wu and Y. Cao, Chem. Soc. Rev., 39, 2500 (2010).
46. F. Huang, H. Wu, D. Wang, W. Yang and Y. Cao, Chem. Mater., 16, 708 (2004).
47. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng and Y. Cao, Adv. Mater., 16, 1826 (2004).
48. R. Yang, H. Wu, Y. Cao and G. C. Bazan, J. Am. Chem. Soc., 128, 14422 (2006).
49. C. Hoven, R. Yang, A. Garcia, A. J. Heeger, T. Q. Nguyen and G. C. Bazan, J. Am. Chem. Soc., 129, 10976 (2007).
50. C. V. Hoven, R. Yang, A. Garcia, V. Crockett, A. J. Heeger, G. C. Bazan and T. Q. Nguyen, Proc. Natl. Acad. Sci., 105, 12730 (2008).
51. J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc., 133, 8416 (2011).
52. B. Xu, Z. Zheng, K. Zhao and J. Hou, Adv. Mater., 28, 434 (2016).
53. J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Müller, G. Pace, R. H. Friend and W. T. Huck, J. Am. Chem. Soc., 133, 683 (2010).
54. C. Duan, L. Wang, K. Zhang, X. Guan and F. Huang, Adv. Mater., 23, 1665 (2011).
55. X. Guan, K. Zhang, F. Huang, G. C. Bazan and Y. Cao, Adv. Funct. Mater., 22, 2846 (2012).
56. C. Duan, K. Zhang, X. Guan, C. Zhong, H. Xie, F. Huang, J. Chen, J. Peng and Y. Cao, Chem. Sci., 4, 1298 (2013).
57. F. Liu, Z. A. Page, V. V. Duzhko, T. P. Russell and T. Emrick, Adv. Mater., 25, 6868 (2013).
58. S. N. Hsieh, S. W. Hsiao, T. Y. Chen, C. Y. Li, C. H. Lee, T. F. Guo, Y. J. Hsu, T. L. Lin, Y. Wei and T. C. Wen, J. Mater. Chem., 21, 8715 (2011).
59. H. Ishii, K. Sugiyama, E. Ito and K. Seki, Adv. Mater., 11, 605 (1999).
60. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh and P. W. Blom, Adv. Mater., 17, 621 (2005).
61. M. L. Sushko and A. L. Shluger, Adv. Funct. Mater., 18, 2228 (2008).
62. M. L. Sushko and A. L. Shluger, Adv. Mater., 21, 1111 (2009).
63. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, J. Mater. Chem. A, 1, 2582 (2013).
64. H. Li, Y. Xu, C. V. Hoven, C. Li, J. H. Seo and G. C. Bazan, J. Am. Chem. Soc., 131, 8903 (2009).
65. C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma and J. Fang, Angew. Chem. Int. Ed., 52, 3417 (2013).
66. X. Ouyang, R. Peng, L. Ai, X. Zhang and Z. Ge, Nat Photon, 9, 520 (2015).
67. C. H. Wu, C. Y. Chin, T. Y. Chen, T. F. Guo, C. H. Lee, T. L. Lin, A. K. Y. Jen and T. C. Wen, J. Mater. Chem. C, 2, 4805 (2014).
68. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 23, 1679 (2011).
69. B. H. Lee, I. H. Jung, H. Y. Woo, H. K. Shim, G. Kim and K. Lee, Adv. Funct. Mater., 24, 1100 (2014).
70. S. Albrecht, W. Schindler, J. Kurpiers, J. Kniepert, J. C. Blakesley, I. Dumsch, S. Allard, K. Fostiropoulos, U. Scherf and D. Neher, J. Phys. Chem. Lett., 3, 640 (2012).
71. H. Zhou, Y. Zhang, J. Seifter, S. D. Collins, C. Luo, G. C. Bazan, T. Q. Nguyen and A. J. Heeger, Adv. Mater., 25, 1646 (2013).
72. S. Guo, B. Cao, W. Wang, J. F. Moulin and P. Muller-Buschbaum, ACS Appl. Mater. Interfaces., 7, 4641 (2015).