簡易檢索 / 詳目顯示

研究生: 王裕俊
Wang, Yu-Chun
論文名稱: 鹼硼四氫化合物作為電子萃取層於高分子異質接面太陽能電池之研究
Study on the alkali boron tetra-hydrides as effective electron extraction layer for bulk hetero-junction polymer solar cells
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 硼氫化鉀硼氫化鈉3-甲基僿吩[6,6]苯基-C61-丁酸甲脂電子萃取薄膜形貌高分子太陽能電池
外文關鍵詞: Potassium borohydride(KBH4), Sodium borohydride (NaBH4), P3HT, PCBM, electron extraction, Thin film Morphology, Polymer solar cell
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主要分為兩部分,分別使用硼氫化合物溶液來修飾高功函數金屬電極和二氧化鈦表面以取代傳統元件。第一部分利用硼氫化合物溶液於高分子吸光層和高功函數金屬間進行修飾,並應用於高分子異質接面太陽能電池(polymer bulk hetero-junction solar cells,OPVs);第二部分利用硼氫鹽化合物溶液修飾二氧化鈦電極表面並應用於倒置式高分子異質接面太陽能電池(Inverted-OPVs,IOPVs),兩部分內容分別詳述如下:
    在第一部分中,我們將硼氫化鉀應用於高分子異質接面太陽能電池(OPVs)中作為電子收集層,經過修飾後元件光電轉換效率可達3.3~3.5%,已可媲美傳統元件效率(~3.5%),推測原因為硼氫化鉀分別與有機層和金屬電極進行化學反應降低載子萃取和注入的能量障礙而有利於載子的傳輸,藉由X射線光電子圖譜、單一載子注入量測、全反射紅外光光譜儀和交流阻抗分析圖譜等可以得到證實。
    第二部分的研究中,我們將硼氫化鈉修飾二氧化鈦電極應用於倒置式高分子異質接面太陽能電池(IOPVs),經由改變不同電極表面性質來影響高分子薄膜吸光層的結構和型態使得元件效率可達3.64%,藉由低掠角X射線繞射法、可見光-紫外光吸收光譜圖、單色光光電轉換效率圖譜和交流阻抗圖譜等得到證實。

    In this thesis we can enhance the PCE of polymer solar cell through simple solution-proceed a new material KBH4、NaBH4 as efficient electron extraction layer in the regular and inverted-type device in polymer bulk hetero-junction solar cell, and the detail as below:
    For the first part, from the current-voltage (J-V) measurements under AM1.5G illumination conditions at an intensity of 100 mW/cm2, we find that the significant increasing in Voc from 0.42V to 0.56V, and FF from 0.45% up to 0.61%, resulting for the maximum power conversion efficiency (PCE) from 1.8% to 3.5% with vacuum-evaporation Al、Ag、Au、Cu as negative electrode. We also performed the electron-only device to analyze the electron injection barrier of negative electrode, and further using x-ray photoemission spectroscopy (XPS)、Attenuation total reflection Infrared spectroscopy(ATR-IR)to confirmed the mechanism of the interlayer on solar cell device.
    For the second part, we study an novel salts NaBH4, to deposit on TiO2 surface by solution fabrication process to improve the efficiency for the TiO2-based I-OPVs. From device current density-voltage (J-V) characteristics it found that the overall power conversion efficiency was increased from 2.80% to 3.64% when NaBH4 was inserted between TiO2 and active layer. This value is as high as the PCE for Ca/Al-based regular device (3.5%). The significant improve for PCE mainly resulting from the increase of short-circuit current from 9.92 to 12.62 (mA/cm2). We assume that the improvement of Jsc is due to the morphology of the active layer. In order to determine the morphology of P3HT:PCBM on the different substrates, IPCE、 Grazing-incidence X-ray diffraction (GI-XRD)、UV-Vis measurements were performed;From these results, the crystalline structures of P3HT:PCBM film on TiO2 and TiO2/ NaBH4 were different. Therefore, we can adjust the morphology of P3HT:PCBM on different substrates to achieve high efficiency I-OPVs.
    The significant enhancement in Voc、FF、Jsc, and the simplicity of incorporating an interlayer by solution processing rather by thermal evaporation make materials as KBH4、NaBH4 a good candidate for further enhancing the performance of polymer solar cells (PSCs).

    中文摘要 ...i 英文摘要 .ii 誌謝 ...iv 目錄 ....v 圖目錄………………………………………………………………………………viii 表目錄……………………………………………………………………xi 符號……………………………………………… xii 第一章 序論 1-1 共軛高分子之光電性質………………………………………………1 1-1-1 前言 ………………………………………………………………1 1-1-2 共軛高分子之導電性質……………………………………………2 1-1-2-1 共軛高分子之能帶階層狀態分佈……………………………………2 1-1-2-2 共軛高分子中載子之傳遞機制…………………………………4 1-1-2-3 激發子的產生與電子電洞對再結合機制…………………5 1-1-3 共軛高分子之結晶性質………………………………………6 1-2 共軛高分子異質接面太陽能電池……………………………………7 1-2-1 有機太陽能電池之發展與沿革……………………………………7 1-2-2 共軛高分子太陽能電池之工作機制………………………………11 1-2-3共軛高分子太陽能電池元件特性分析…………………………13 1-3 界面修飾材料於共軛高分子異質接面太陽能電池…………………16 1-3-1 電洞收集材料的發展沿………………………………………16 1-3-2 電子收集材料之發展沿革……………………………………17 1-4 研究動機………………………………………………………19 第二章 鹼硼四氫化合物修飾高功函數金屬陰極應用於高分子太陽能電池 2-1 前言………………………………………36 2-2 實驗部分……………………37 2-2-1藥品來源……………37 2-2-2太陽能電池之組裝………………………………………………38 2-2-2-1黃光微影圖案化……………………………………………38 2-2-2-2正極之製作…………………………………………38 2-2-2-3高分子異質接面薄膜製作………………………………39 2-2-2-4負極之製作………………39 2-2-3太陽能電池之量測………………………………40 2-2-3-1 元件電流對電壓的量測………………………………40 2-2-3-2 元件單一載子注入量測………………………………40 2-2-3-3 高分子表面化學元素分析……………………………41 2-2-3-4 全反射紅外光光譜量測………………….……………41 2-3結果與討論………………………………………..42 2-3-1硼氫化物修飾電極之太陽能電池元件特性分析.......42 2-3-1-1硼氫化物修飾鋁電極之太陽能電池元件特性分析……………42 2-3-1-2 比較不同陰離子團以鋁為電極之太陽能電池元件特性分析…44 2-3-1-3 硼氫化物修飾金、銀電極之太陽能電池元件特性分析……45 2-3-1-4不同陰離子團以金、銀作為電極之太陽能電池元件特性分析……46 2-3-2不同陰離子以鋁、銀為負極之單一電子注入分析…………………47 2-3-3 全反射紅外光光譜於P3HT之測…………………………………48 2-3-4 P3HT、PCBM表面能量狀態化學元素分析……………49 2-4結論………………………………………………………………51 第三章、鹼硼四氫化合物修飾二氧化鈦表面應用於倒置式高分子太陽能電池 3-1 前言……………………………………………………….70 3-2實驗部分………………………………………………………..71 3-2-1藥品之選用……………………………………………….…………71 3-2-2倒置式太陽能電池元件之製備………………………………………….72 3-2-3 太陽能電池之量測……………………………………………………….73 3-2-3-1 元件電流對電壓的量測………………………………….73 3-2-3-2 元件光電轉換量子效率(IPCE)量測…………………………73 3-2-3-3 低掠角X光繞射於主動層之量測……………………………73 3-2-3-4紫外光-可見光吸收光譜於主動層之量測……………………74 3-3結果與討論……………………………………………………….74 3-3-1太陽能電池元件特性分析………………………………….74 3-3-2 主動層紫外光-可見光吸收光譜分析………………………….76 3-3-3主動層結晶度與結構分析………………………….77 3-3-3-1 垂直於基板之低掠角X光繞射分析…………………………..77 3-3-3-2 平行於基板之低掠角X光繞射分析………………………..79 3-4 結論…………………………………………….81 第四章、 總結建議與展望 4-1 總結…………………………………………………….97 4-2 建議與展望………………98 參考文獻...................100 自述與研討會論文………………………..…………..107

    1. A. J. Heeger, J. Phys. Chem. B, 105, 8475, (2001)
    2. Manu Jaiswal and Reghu Menon, Polym. Int. 55, 1371-1384, (2006)
    3. Martin Helgesen, Roar Sondergaard, and Frederik C. Krebs, J.Mater.Chem.,20,36-60,(2010)
    4. A. Moliton and R. C Hiorns, polym. Int., 53, 1397, (2004)
    5. R. W. T. Higgins, N. A. Zaidi and A. P. Monkman, Adv. Funct. Mater., 11, 407, (2001)
    6. T. W. Lee, Y. S. Chung, O. Kwon and J. J. Park, Adv. Funct. Mater., 17, 390, (2007)
    7. A. B. Kaiser, Phys. Rev. B 40, 2806,(1989)
    8. C. Moreau, R. Antony, A. Moliton and B. Francois, Adv. Mat. Opt. Electron 7, 281,(1997)
    9. Lay-lay Chun, Jana Zaumseil, Henning Sirringhaus and Richard H. Friend, Nature, 434, 194,(2005)
    10. Tobias Erb,Uladzimir Zhokhavets, Gerhard Gobsch,J.Brabec, Adv. Fun. Mater.15,1193,(2005)
    11. In-Wook Hwang, Daniel Mosese, and Alan J. Heeger, J. Phys. Chem. C, 112, 4350-4354,(2008)
    12. G. Yu and A. J. Heeger, J. Appl. Phys. 78, 4510,(1995)
    13. J. L. Bredas, R. R. Chance, R. Silbey, Nicolas Gand Durand P, Phys. Rev. B 26, 371,(1982)
    14. V. D. Mihailetchi, L. J. A. Koster, and P.W. M. Blom, Physical Review Letters, 93, 216601-1,(2004)
    15. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend and J. D. MacKenzie, Science 293, 1119,(2001)
    16. Ying-Xuan Wang, Shin-Rong Tseng, and Sheng-Fu Horng, Appl. Phys. Lett., 93, 133501,(2008)
    17. Youngkyoo Kim, Iain Mcculloch, Jenny Nelson, and Moonhor Ree, Nature Materials,5,197,(2006)
    18. Peter J. Brown, Ji-seon Kim, and Richard H. Friend, PHysical Review B, 67, 064203, (2003)
    19. Takeaki Sakurai, Toshihiro Yamanari, and Katsuhiro Akimoto, Japanese Journal of Applied Physics, 49, 01AC01,(2010)
    20. Richard D. McCullough, Adv. Mater.10, 93,(1998)
    21. S. E. Shaheen, D. S. Ginley and G. E. Jabbour, Mrs. Bull., 30, 10, (2005)
    22. B. O'Regan and M. Gratzel , Nature, 353, 737, (1999)
    23. A.Yakimov and S. R. Forrest, Appl. Phys. Lett., 80, 1667, (2002)
    24. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1474, (1992)
    25. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 62, 585, (1993)
    26. G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, Science, 270, 1789, (1995)
    27. Kevin M. Coakley and Michael D. McGehee, Chem. Mater., 16, 4533-4542,(2004)
    28. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 317, 222, (2007)
    29. Hsiang-Yu Chen, Jianhui Hou, Guanwen Yang, Yang Yang, Nature photonics,3,649,(2009)
    30. R. Steim, S. A. Choulis, R. Schilinsky and C. J. Brabec, Appl. Phys. Lett., 92, 093303 (2008)
    31. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 89, 143517, (2006)
    32. P. Peumans and S.R. Forrest, Appl, Phys. Lett., 79, 126, (2001)
    33. H. Hoppe, N.S. Sariciftci, J. Mater. Res., 19, 1924, (2004)
    34. Andr'e Moliton and Jean-Michael Nunzi, Polym. Int., 55, 583-600,(2006)
    35. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, J. Appl, Phys, 94, 6849, (2003)
    36. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Fun. Mater., 11, 374, (2001)
    37. S.R. Forrest and Mrs Bull., 30, 28, (2005)
    38. C. J. Ko, Y. K. Lin, F. C. Chen and C. W. Chu, Appl. Phys. Lett., 90, 063509, (2007)
    39. Y.CaO, M.Treacy, A.J. Heeger, Nature, 357, 477,(1992)
    40. C.Y.Li,T.C.Wen,T.F.GaO,Y.J.Hsu, J.Mater.Chem.,19,1643,(2009)
    41. H. H. Liao, L. M. Chen, Z. Xu, G. Li and Y. Yang, Appl. Phys. Lett., 92, 173303, (2008)
    42. K. Lee, J. Y. Kim, S. H. Park, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Adv. Mater., 19, 2445, (2007)
    43. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20, 2376, (2008)
    44. Christoph J. Brabec, Sean E. Shaheen, N. Serdar Sariciftci, Appl. Phys. Lett.,80,1288,(2002)
    45. Fang-Chung Chen, Jyh-Lih Wu,Sidney S. Yang, Kuo-Huang Hsieh, and Wen-Chang Chen,J. Appl. Phys. 103, 103721,(2008)
    46. Ziqi Liang,Alexandre Nardes,Brian A.Gregg,Chem.Mater.21,4914,(2009)
    47. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 18, 789, (2006)
    48. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh and P. W. M. Blom, Adv. Mater., 17,621, (2005)
    49. Jinsong Huang, Gang Li, and Yang Yang,Adv. Mater.20, 415–419,(2008)
    50. Erik Ahlswede, Jonas Hanisch, and Michael Powalla, Appl. Phys. Lett.,90,163504,(2007)
    51. Zheng Xu,Li-Min Chen,Mei-Hsin Chen,Yang Yang, Appl. Phys. Lett.,95,013301,(2009)
    52. E.Ettedgui,H. Razafitrimo, and Y. Gao, Appl. Phys. Lett.,67,30,(1995)
    53. Myung-Su Kim, Bong-Gi Kim, and Jinsang Kim, Applied Materials and Interfaces, 1, 1264,(2009)
    54. Jonathan D. Servaites, Sina Yeganeh, Tobin J. Marks, and Mark A. Ratner, Adv. Fun. Mater., 20 , 97-104, (2010)
    55. Hisao Ishii, Kiyoshi Sugiyamma, Eisuke Ito and Kazuhiko Seki, Adv. Mater.11, 605,(1999)
    56. V. D. Mihailetchi, L. J. A. Koster, and P. W. M. Blom, Appl. Phys. Lett.,85,970,(2004)
    57. Basudev Pradhan, Amlan J. Pal, Chemical Physics Letters, 416, 327-330 ,(2005)
    58. R. Steyrleuthner, S. Bange, and D. Neher, J. Appl. Phys. 105, 064509, (2009)
    59. Leonidas C. Palilis, Manabu Uchida, and Zakya H. Kafafi, IEEE, 10, 79, (2004)
    60. David E.Motaung,Gerald F.Malgas,D.Knoesen,Materials Chemistry and Physics 116,279,(2009)
    61. Matthieu Manceau,Jean-Luc Gardette,Polymer degradation and stability,94,898,(2009)
    62. Vishal Shrotriya,Jianyong Ouyang,Ricky J.Tseng,Yang Yang,Chemical Physics Letters,411,138,(2005)
    63. E. De Giglio, C. D. Calvano, L. Sabbatini, P. G. Zambonin, Surf. Interface Anal. 37, 580, (2005)
    64. A. Lachkar, A. Selmani, E. Sacher, Synthetic Metals, 72, 73-80, (1995)
    65. P. Dannetun, M. Boman, S. Stafstrom, and W. R. Salaneck, J. Chem. Phys, 99, 664, (1993)
    66. J. Premper, M. Trautmann, J. Henk, and P. Bruno, Physical Review B, 76, 073310, (2007)
    67. Junfa Zhu, Fabian Bebensee, Wolfgang Hieringer, Campbell, J. AM. CHEM. SOC., 131, 13498–13507,(2009)
    68. Kouki Akaike, Kaname Kanai, Yukio Ouchi, and Kazuhiko Seki, Appl. Phys. Lett., 94, 043309,(2009)
    69. M.K.Fung,S.L.Lai,S.W.Tong,C.S.Lee, J. Appl, Phys,94,5763,(2003)
    70. Abay Gadisa,Mattias Svensson,Mats R.Andersson, Appl. Phys. Lett.,84,1609,(2004)
    71. Carl Tengstedt, Ian D. Parker, Mats Fahlman, Appl. Phys. Lett.,88,053502,(2006)
    72. Zheng Xu, Li-Min Chen, Chain-shu Hsu, and Yang Yang, Adv. Fun. Mater., 19 , 1-8 ,(2009)
    73. Joanna E.Slota,Ximin He,Wilhelm T.S. Huck, Nano Today,5,231,(2010)
    74. D. Chirvase, J. Parisi, J.C. Hummelen and V. Dyakonov, Nanotechnology, 15, 1317-1323, (2004)
    75. Chin-Wei Chu, Hoichang Yang, Gang Li, and Yang Yang, Appl. Phys. Lett., 92, 103306,(2008)
    76. R.Joseph Kline,Michal D.Mcgehee,Nature Materials,5,222,(2006)
    77. A. Mohammadi Gheidari, E. Asl Soleimani, M. Mansorhoseini, W. Shams-Kolahi, Materials Research Bulletin 40, 1303–1307,(2005)
    78. JIAGUO YU, XIUJIAN ZHAO, JINCHENG DU, and WENMEI CHEN, Journal of Sol-Gel Science and Technology, 17, 163–171,(2000)
    79. S. Orimo, Y. Nakamori, A. Zuttel, Materials Science and Engineering B108 51,(2004)
    80. Cuiying Yang,Jerry G.Hu,Alan J.Heeger, J. AM. CHEM. SOC.,128,12007,(2006)
    81. P.J.Brown,R.H.Friend,M.M.Nielsen,Nature,401,685,(1999)

    下載圖示 校內:2013-06-23公開
    校外:2014-06-23公開
    QR CODE