簡易檢索 / 詳目顯示

研究生: 王智憲
Wang, Chih-Shian
論文名稱: 後熱處理對噴霧法LiMn2O4正極材料之充放電特性效應探討
Effect of Post-treatment on Charge-discharge Capacity of Spray-drying LiMn2O4 Electrode Material
指導教授: 方滄澤
Fang, Tsang-Tse
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 74
中文關鍵詞: 噴霧乾燥鋰錳氧
外文關鍵詞: Spray-drying, LiMn2O4
相關次數: 點閱:69下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用噴霧乾燥法並配合後續熱處理可合成單相之LiMn2O4粉末,因此熱處理條件對粉末特性的影響相當重要。本研究藉由控制煆燒溫度、時間及氣氛獲得不同LiMn2O4粉末,並進行循環充放電測試(0.3C,截止電壓為3.0及4.3V),以探討煆燒條件對LiMn2O4粉末充放電特性的影響。
      經由BET及XRD分析,可知當增加煆燒溫度及時間時,會使得LiMn2O4粉末的表面積下降及晶格常數增加,其中以煆燒溫度的影響較為顯著。而充放電測試結果顯示以700℃,5小時的煆燒條件所得到的放電電容量最佳(約125mAh/g),且在15次充放電循環後其循環效率維持在95%左右。
      本研究同時將LiMn2O4粉末在900℃氧氣氛圍下進行煆燒,以改善高溫煆燒所造成的氧損失,並進行充放電測試。實驗結果顯示通入氧氣進行煆燒可增加初始放電電容量,但無法改善循環效率劣化。

      A spray-drying method has been developed to synthesize ultrafine LiMn2O4 powders. For the purpose to acquire completely spinel LiMn2O4 powders, a post heat treatment, calcination, should be performed. In this study, parameters of heat treatment including atmospheres, holding temperature and time were controlled to obtain the powders with superior discharge capacity. The cyclic discharge tests were performed at a 0.3C rate between 3.0V and 4.3V.
      Through analyzing by XRD and BET, it could be found that the lattice constant was enlarged and the surface area was reduced with increasing holding temperature and holding time. The effect of holding time was tremendous. The recommended optimal parameters are calcining at 700℃ for 5h. The samples thus produced exhibit an initial discharge capacity of 125mAh/g and the capacity retention of 95% after 15 cycles.
      To reduce oxygen deficiency while calcination at high temperatures, parts of the powders were calcined under flowing oxygen circumstance at 900℃. It can be found that calcinations with oxygen can raise the initial discharge capacity, however, capacity fading after cyclic discharge can not be improved.

    中文摘要………………………………………………………… Ⅰ 英文摘要………………………………………………………… Ⅱ 誌謝……………………………………………………………… Ⅲ 總目錄…………………………………………………………… Ⅳ 表目錄…………………………………………………………… Ⅶ 圖目錄…………………………………………………………… Ⅷ 第一章 緒論……………………………………………… 1 1-1 鋰離子電池簡介……………………………………… 1 1-2 研究大綱及目的…………………………………… 2 第二章 理論基礎與文獻回顧………………………… 5 2-1 鋰離子電池的工作原理……………………………… 5 2-2 鋰離子電池的理論電容量…………………………… 5 2-3 鋰離子電池的系統構造……………………………… 6 2-4 陰極材料的合成方法………………………………… 7 2-4-1 噴霧乾燥法……………………………………… 7 2-4-2 噴霧乾燥原理…………………………… 8 2-4-2-1 簡介……………………………………………… 8 2-4-2-2 原理……………………………………………… 9 2-5 尖晶石型態鋰錳氧材料……………………………… 11 第三章 實驗方法…………………………………………… 22 3-1 實驗藥品與器材……………………………………… 22 3-2 陰極材料粉末之合成……………………………… 22 3-3 陰極材料粉末性質分析……………………………… 23 3-3-1 X粉末繞射分析……………………………… 23 3-3-2 掃描式電子顯微鏡(SEM)之分析……………… 23 3-3-3 熱重分析………………………………………… 23 3-3-4 表面積測量……………………………………… 24 3-3-5 感應耦合電漿質譜分析(ICP)…………………….. 24 3-4 充放電測試……….……………………………………… 24 第四章 結果與討論………………………………………… 31 4-1 LiMn2O4粉末之煆燒溫度效應…….…..………………… 31 4-1-1 LiMn2O4粉末合成與粉末X光繞射分析……… 31 4-1-2 LiMn2O4粉末之熱重分析……………………… 32 4-1-3 煆燒溫度對晶格常數的影響…………………… 32 4-1-4 LiMn2O4之比表面積與表面型態……………… 33 4-1-5 煆燒溫度對LiMn2O4充放電性質之影響……… 33 4-2 固定700℃下LiMn2O4粉末之煆燒時間效應…………… 34 4-2-1 LiMn2O4粉末X光繞射分析…………………… 34 4-2-2 煆燒時間對晶格常數的影響…………………… 35 4-2-3 LiMn2O4之比表面積與表面型態……………… 35 4-2-4 煆燒時間對LiMn2O4充放電性質之影響………36 4-3 高溫煆燒氣氛效應…………………………………… 37 4-3-1 LiMn2O4粉末X光繞射、晶格常數分析…… 37 4-3-2 不同煆燒氣氛下SEM表面型態觀察…………… 37 4-3-3 不同煆燒氣氛對LiMn2O4充放電性質之影響… 38 4-4 噴霧法製程對充放電影響因素…………………… 38 第五章 結論…………………………………………………. 66 第六章 參考文獻…………………………………………… 67

    1. G. Pistoria, “Lithium Batteries: New Materials, Developments and Perspectives”, Elsevier, Chap.1, p.3 (1994).
    2. Linden, “Handbook of Batteries and Fuel Cells”, McGraw-Hill Inc., Chap.11, p.1-2 (1984).
    3. M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Grover, “Synthesis and Structure Characterization of the Normal Spinel Li[Ni2O4]”, Materials Research Bulletin, vol.20, p.1137-1146 (1985).
    4. A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi and M. Leonini, “Solid-State Reaction Study on the System Ni-Li2CO3”, Solid State Ionics, vol.32-33, p.398-408 (1989).
    5. J. Morales, C. Peraz-Vicente and J. L. Tirado, “Cation Distribution and Chemical Deintercalation of Li1-XNi1+XO2”, Materials Research Bulletin, vol.25, p.623-630 (1990).
    6. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin, “A Rechargeable Li/LixCoO2 Cell”, Journal of Power Sources, vol.21, p.25-31 (1987).
    7. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “Li xCoO2 (0<x<1): A New Cathode Material for Batteries of High Energy Density”, Materials Research Bulletin, vol.15, p.783-789 (1980).
    8. H. J. Orman and P. J. Wiseman, “Cobalt (Ⅲ) Lithium-Oxide, Colio2-Structure Refinement by Power Neutron-Diffraction”, Acta Crystallographica, vol.40, p.12-16 (1984).
    9. A. Mendiboure, C. Delmas and P. Hagemmuller, “New Layered Structure Obtained By Electrochemical Deintercalation of the Metastable Li xCoO2 (O2) Variety”, Materials Research Bulletin, vol.19, p.1383-1392 (1984)
    10. T. Nagaura and K. Tazawa, “Lithium Ion Rechargeable Battery”, Progess Batteries & Solar Cells, 9, p.209 (1990).
    11. J. M. Tarascon and D. Guyomard, “The Li1+xMn2O4/C Rocking-Chair System: A Review”, Electrochimica Acta, vol.38, p.1221-1231 (1993).
    12. J. M. Tarascon and D. Guyomard, “Li Metal-Free Rechargeable Batteries Based on Li1+xMn2O4 Cathode (0≦x≦1) and Carbon Anodes”, Journal of the Electrochemical Society, vol.138, p.2864-2868 (1991).
    13. J. M. Tarascon, D. Guyomard and G. L. Baker, “An Update of the Li Metal-free Rechargeable Battery Based on Li1+xMn2O4 Cathode and Carbon Anodes”, Journal of Power Sources, vol. 44, p.689-700 (1993).
    14. 林志豪,「鋁、鎳添加物對鋰離子電池陰極材料-LiMn2O4電性及電化學性質之影響」,國立成功大學材料科學及工程學系,碩士論文,(2003)。
    15. R. J. Gummow and M. M. Thackeray, “Lithium-Cobalt-Nickel-Oxide Cathode Materials Prepared at 400 Degree C for Rechargeable Lithium Batteries”, Solid State Ionics, vol.53, p.681-687 (1992).
    16. S. W. Jang, H. Y. Lee, K.C. Shin, S. M. Lee, J. K. Lee, S. J. Lee, H. K. Baik, D. S. Rhee, “Synthesis and Characterization of Spine Li-Mn-O for Lithium Secondary”, Journal of Power Sources, 88, p.274-277 (2000).
    17. A. Manthiram, “Electrode materials for rechargeable lithium batteries”, JOM, March, vol.49(3), p.43 (1997).
    18. 奈米時代,尹邦躍,69頁,五南圖書,民國91年。
    19. 工業材料,「鋰離子電池電極材料:陰極材料LiCoO2-中央大學發展概況」,費定國、袁正宇,158期,153-158頁 (2000)。
    20. 工業材料,「方型二次鋰離子電池材料介紹」,許雪萍,130期,104-110頁(1997)。
    21. J. Pierre and P. Ramos, “Electrochemical Properties of Cathodic Materials Sythesized by Low-Temperature Techniques” Journal of Power Sources, vol.54, p.120-126 (1995).
    22. M. Kakihana, “Invited Review Sol-Gel Preparation of High Temperature Superconducting Oxides”, Journal of Sol-Gel Science and Technology, vol.6, p.7 (1996).
    23. S.G. Kang , S.Y. Kang, K.S. Ryu and S.H. Chang, “Lectrochemical and Structural Properties of HT-LiCoO2 and LT-LiCoO2 Prepared by the Citrate Sol-Gel Methode”, Solid State Ionics, vol.120, p.155-161, (1999).
    24. Y. K. Sun, I. H. Oh, S. A. Hong, “Synthesis of Ultrafine LiCoO2 Powders by the Sol-Gel Method”, Journal of Materials Science, vol.31, p.3617 (1996).
    25. G. T. K. Fey, K. S. Chen, B. J. Hwang, and Y. L. Lin, “High-Resolution Images of Ultrafine LiCoO2 Powder by a Spray-Drying Method”, Journal of Power Sources, vol.68, p.519-523 (1997).
    26. 袁正宇,「鋰離子電池層狀及反尖晶石陰極材料溶膠-凝膠法製程研究」,國立中央大學化學及材料工程學系,碩士論文,(1999)。
    27. P. N. Kumta, D. Gallet. A. Waghray, G. E. Blomgren and M. P. Setter, “Synthesis of LiCoO2 Powders for Lithium-Ion Batteries from Precursors Derived by Rotary Evaporation”, Journal of Power Sources, vol.72, p.91-98 (1998).
    28. Y. K. Sun, “Cycling Behaviour of LiCoO2 Cathode Materials Prepared by PAA-Assisted Sol-Gel Method for Rechargeable Lithium Batteries”, Journal of Power Sources, vol.83, p.223-226, (1999).
    29. J. Kim, P. Fulmer, and A. Manthiram, “Synthesis of LiCoO2 Cathode by an Oxidation in Solution and Their Electrochemical Properties”, Material Research Bulletin, vol.34, p.571-579 (1999).
    30.R. Gover, M. Yonemura , A. Hirano, R. Kanno, Y. Kawamoto, C. Murphy, B. Mitchell and J. W. Richardson Jr., “The Control of Nonstoichiometry in Lithium Nickel-Cobalt Oxides”, Journal of Power Sources, vol.81, p.535-541 (1999).
    31. H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, and L. Chen, “Microwave Synthesis of LiCoO2 Cathode Materials”, Journal of Power Sources, vol.68, p.530-532 (1997).
    32.V. Subramanian, C. L. Chen, H. S. Chou, G. T. K. Fey, “Microwave-Assisted Solid-State Synthesis of LiCoO2 and its Electrochemical Properties as a Cathode Material for Lithium Batteries” Journal of Material Chemistery, vol.11, p.3348 (2001).
    33.H. Yan, X. Huang, H. Li and L. Chan, “Electrochemical Study on LiCoO2 Sythesized by Microwave Energy”, Solid State Ionics, vol.113, p.11-15 (1998).
    34. Y. Li, C. Wan, Y. Wu, C. Jiang and Y. Zhu, “Synthsis and Characterization of Ultrafine LiCoO2 Powders by a Spray-Drying Method”, Journal of Power Sources, vol.85, p.294-298 (2000).
    35. C. Wan, Y. Nuli, Q. Wu, M. Yan and Z. Jiang, “Submicro-Sized LiMn2O4 Prepared by a Sol-gel, Spray-Drying Method”, Journal of Applied Electrochemistry, vol.33, p.107-112 (2003).
    36. 林致暄,「噴霧乾燥法製備表面改質之氮化鋁粉體」國立成功大學化學工程學系,碩士論文,(2000)。
    37. K. Ooi, Y. Miyai, S. Katoh, “Lithium-Ion Sieve Property of λ-Type Manganese Oxide”, Solvent Extraction and Ion Exchang, vol.5(3), p.561-572 (1987).
    38. J. C. Hunter, “Preparation of a New Crystal Form of Manganese Dioxide: λ-MnO2”, Journal of Solid State Chemical, vol.39, p.142-147 (1981).
    39. J. M. Tarascan, E. Wang and F. K. Shokoohi, “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells”, J. Electrochem. Soc. Vol.138, p.2859-2864 (1991).
    40. V. S. Pervov, I. A. Kedrinskii and E. V. Makhonina, “Cathode Materials for Rechargeable Lithium Batteries”, Inorganic Materials, vol.33(9), p.869-877 (1997).
    41. J. M. Tarascon, M. R. Mckinnon, F. Coowar, T. N. Bowmer, G. Amatucci, and D. Guyomard, “Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4”, Journal of the Electrochemical Society, vol.141, p.1421-1431 (1994).
    42. Y. Gao and J. R. Dahn, “The High Temperature Phase Diagram of Li1+xMn2-xO4 and its implications”, Journal of the Electrochemical Society, vol.143, p.1783-1788 (1996).
    43. G. X. Wang, J. Horvat, D. H. Bradhurst, H. K. Liu, and S. X. Dou, “Structure Physical and Electrochemical Characterisation of LiNixCo1-xO2 Solid Solutions”, Journal of Power Sources, vol.85, p.279-283 (2000).
    44. Y. K. Sun, K. H. Lee, S. I. Moon and I. H. Oh, “Effect of Crystallinity on the Electrochemical Behaviour of Spinel Li1.03Mn2O4 Cathode Materials”, Solid State Ionics, vol.112, p.237-243 (1998).
    45. W. Liu, K. Kowal and G. C. Farrington, “Electrochemical Characteristics of Spinel Phase LiMn2O4-Based Cathode Materials Prepared by the Pechini Process. Influence of Firing Temperature and Dopants”, Journal of the Electrochemical Society, vol.143, p.3590-3596 (1996).
    46. Y. Xia, H. Takeshige, H. Koguchi, M. Yoshio, “Studies on an Li-Mn-O Spinel System (Obtained by Melt-Impregnation) as a Cathode for 4V Lithium Batteries”, Journal of Power Sources, vol.56, p.61-67 (1995).
    47. S. Ma, H. Noguchi, M. Yoshio, “Synthesis and Electrochemical Studies on Li-Mn-O Compounds Prepared at High Temperatures”, Journal of Power Sources, vol.126, p.144-149 (2004).

    下載圖示 校內:2005-08-30公開
    校外:2005-08-30公開
    QR CODE