| 研究生: |
陳博政 Chen, Po-Cheng |
|---|---|
| 論文名稱: |
以動態耦合熱彈理論預測壓電材料之表面行為 Prediction of Surface Behavior of a Piezoelectric Material Using the Dynamic Coupled Thermoelastic Theorem |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 鬆弛時間 、逆拉氏轉換法 、熱彈理論 、形狀函數 |
| 外文關鍵詞: | Thermoelectric theorem, Shape function, Numerical inversing of Laplace Transform, Relaxation time |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著加工技術逐漸的提昇,製造過程中許多微尺度問題漸漸浮現,例如:熱應力及材料相變化等問題。根據傳統傅立葉熱傳定律(Fourier’s law),熱於物體內部是以無限的速率傳遞。但於某些特殊情況下,熱傳遞速率可能為有限。基於上述因素,廣義熱彈性理論(Generalized thermoelectric theorem)便漸漸受到重視。其主要原因在於當材料受到高熱作用時,在極短時間下,該材料內部之應力會受溫度及位移影響。因此本文將引用Green-Lindsay的廣義熱彈性理論,來探討壓電材料之溫度、位移及應力之分佈情形。
本文將應用拉氏轉換法(Laplace transform method)移除統制方程式與邊界條件中的時間項,再利用控制體積法(Control volume method) 配合本文所提出之雙曲線型的形狀函數(Hyperbolic shape function) 來處理經過拉氏轉換後的方程式。提出此觀念主要目的在克服數值中可能有跳躍式的不連續現象(Jump discontinuity)。最後再利用逆拉氏轉換法(Numerical inversing of Laplace Transform)求得實際之位移、溫度及應力。為了欲驗證本文之數值分析的正確性,將以半無窮邊界條件作探討,求解出溫度、位移及應力,與解析解比較之,進而了解各參數對溫度、位移及應力之影響。
Owing to the improvements of the processing technology, there exist a lot of micro-scale problems during the fabrication, such as thermal stress and phase change of materials etc.. Under the assumption of the Fourier’s law, the speed of the thermal wave in a body is infinite. But this speed can be finite, such as the problem in a very short time. Under this circumstance, the generalized thermoelectric theorem can be introduced to analyze such problems. The main purpose is to investigate the effects of temperature and displacement on the thermal stress in a very short time. Therefore, Generalized thermoelectric theorem is used to investigate the temperature, the displacement, and the stress distribution in piezoelectricity material.
The governing differential equations and boundary conditions are transformed by using the Laplace transform method and then the control volume method is used to discrete the resulting differential equations. The hyperbolic shape functions. As introduced in order to overcome the numerical oscillations in the from Jump discontinuities Finally, the numerical inversion of the Laplace transform is used to obtained the temperature, the displacement and the stresses.
In order to evidence the accuracy of the numerical scheme, a comparison of the numerical results and the analytical solution is made for a semi-finite problem conditions is used to get the distributions of temperature, displacement, and stress, then compare with the analytical results.
[1]Takuro Ikeda, “Fundamentals of
Piezoelectricity”, Oxford Science
Publications, New York, pp.1-4, 1990.
[2]L. Landau, “Theory of superfluidity of helium Ⅱ”, Journal of Physics, Vol.5, pp.71-76, 1941.
[3]V. Peshkov, “Second sound in heliumⅡ”, Journal of Physics, USSR, Vol.8, pp.381-386, 1944.
[4]M. Carlo Cattaneo, “Sullar conduzione de calor”, Atti Sem Mat Fis Univ Modena, Vol.3, pp.3-10, 1948.
[5]H.W. Lord, Y. Shulman, “A generalized dynamic theory of thermoelasticity”, Journal of the Mechanics and Physics of Solids, Vol.15, pp.299-309, 1967.
[6]A.E. Green, K.E. Lindsay, “Thermoelasticity”, Journal of Elasticity, Vol.2, pp.1-7, 1972.
[7]P.H. Francis, “Thermo-mechanical effects in elastic wave propagation: a survey”, Journal of Sound Vibration, Vol.21, pp.181-192, 1972.
[8]J. Ignaczak, “Linear dynamic thermoelasticity:a survey”, The Shock and Vibration Digest, Vol.13, pp.3-8, 1981.
[9]D.S. Chandrasekharaiah, “Thermoelasticity with second sound:a review”, Applied Mechanics Reviews, Vol.39, pp.355-376, 1986.
[10]D.S. Chandrasekharaiah, K.S. Srimath, L. Debnath, ”Magneto- thermo-elastic disturbances with thermal relaxation in a solid due to heat sources”, Computers and Mathematics with Applications, Vol.15, No.6, pp.483-490, 1988.
[11]S.K. Roy-Couture, “A coupled magneto-thermo-elastic problem in a perfectly conducting elastic half-space with thermal relaxation”, International Journal of Mathematics and Mathematical Sciences, Vol.13, No.3, pp.567-578, 1990.
[12]H.S. Saxena, R.S. Dhaliwal, “Half-space problem in one dimensional generalized magnetothermoelasticity”, Journal of Thermal Stresses, Vol.14, pp.65-84, 1991.
[13]D. Chand, J.N. Sharma, S.P. Sud, “Transient generalized magnetothermo-elastic waves in a rotating half-space”, International Journal of Engineering Science, Vol.28, No.6, pp. 547-556, 1990.
[14]S.C. Misra, S.C. Samanta, A.K. Chakrabarti, “Transient magnetothermoelastic waves in a viscoelastic half –space produced by ramp-type heating of its surface”, Computers & Structures, Vol.43, No.5, pp.951-960, 1992.
[15]J.C. Misra, A.K. Chakrabarti, S.C. Samanta, “Thermally induced vibration in an infinite anisotropic viscoelastic solid with a cylindrical cavity in the presence of a uniform axial magnetic field”, International Journal of Engineering Science, Vol.31, No.7, pp.1074-1052, 1993.
[16]H.H. Sherief, “Problem in electromagneto thermoelasticity for an infinitely long conducting circular cylinder with thermal relaxation”, International Journal of Engineering Science, Vol.32, No.7, pp.1137-1149, 1994.
[17]H.H. Sherief, M.A. Ezzat, “A thermal-shock problem in a magnetothermoelasticity with thermal relaxation”, International Journal of Solids and Structures”, Vol.33, No.30, pp.4449-4459, 1996.
[18]S.K. Roy-Choudhuri, “Magnetothermoelastic waves induced by a thermal shock in a finitely conducting elastic half-space”, International Journal of Mathematics and Mathematical Sciences, Vol.19, No.1, pp.131-144, 1996.
[19]F.R. Norwood, W.E. Warren, “Wave propagation in the generalized dynamical theory of thermoelasticity”, Quarterly Journal of Mechanics and Applied Mathematics, Vol.22, pp.283-290, 1969.
[20]H.H. Sherief, “Fundamental solution of the generalized thermoelastic problem for short times”, Journal of Thermal Stresses, Vol.9, pp.503-509, 1986.
[21]R.S. Dhaliwal, J.G. Rokne, “One-dimensional generalized thermoelastic problems for a half-space”, Journal of Thermal Stresses, Vol.11, pp.257-271, 1988.
[22]Anwar, M.N.Y., “Problem in generalized thermoelasticity for a half-space subject to smooth heating of its boundary”, Journal of Thermal Stress, Vol.14, pp.241-254, 1991.
[23]T.S. , T.B. Moodie, “ -extended ray series expansions in generalized thermoelasticity”, Journal of Thermal Stresses, Vol.14, pp.85-99, 1991.
[24]何天虎,田曉耕,沈應鵬, “一維半無限電桿的廣義的熱衝壓問題”, 力學學報, 第35卷, 第2期, 第158-165頁, 2003年.
[25]H.T. Chen, J.Y. Lin, ”Numerical analysis for hyperbolic heat conduction”, International Journal of Heat and Transfer, Vol.36, No.11, pp.2891-2898, 1993.
[26]G. Honing, U. Hirdes, “A method for the numerical inversion of Laplace transforms”, Journal of Computational and Applied Mathematics, Vol.10, pp.113-132, 1984.
[27]D.Y. Tzou, “Macro-to Microscale Heat Transfer:the lagging behavior”, Taylor & Franics, United States of America, pp.18-22, 1996.
[28]劉國基, “雙曲線型擴散問題之探討”, 國立成功大學機械工程研究所, 博士論文, pp.15-34, 2002.
[29]D. Tao, J.H. Prevost, “Relaxation effects in a transient thermoelastic problem”, Journal of Thermal Stresses, Vol.7, pp.79-89, 1984.
[30]T.C. Chen, C.I. Weng, “Generalized coupled transient thermoelastic plane problems by Laplace transform/finite element mothod”, ASME Journal of Applied Mechanics, Vol.55, pp.377-382, 1988.
[31]R.S. Dhaliwal, J.G. Rokne, “One-dimensional generalized thermal shock with two relaxation times”, Journal of Thermal Stresses, Vol.12, pp.259-279, 1989.
[32]E. Sternberg, J.G. Chakravorty, “On inertia effects in a transient thermoelastic problem”, ASME, Journal of Applied Mechanics, Vol.26, pp.503-509, 1959.
[33]D.Y. Tzou, “Macro-to Microscale Heat Transfer:the lagging behavior”, Taylor & Franics, United States of America, pp.30-48, 1996.
[34]林厚志 ,”探討具有鬆弛時間之動態耦合熱彈問題,” 國立成功大學機械工程研究所, 碩士論文, pp.52-54, 1993.