簡易檢索 / 詳目顯示

研究生: 鐘詠迪
Chung, Yung-Ti
論文名稱: 316L不鏽鋼之選擇性雷射熔融積層製程應力與變形分析
Analysis of Selective Laser Melting Addictive Manufacturing Process Induced Stress and Deformation of 316L Stainless Steel
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 122
中文關鍵詞: 選擇性雷射熔融316L不鏽鋼殘留應力翹曲變形
外文關鍵詞: Selective laser melting, 316L stainless steel, residual stress, warpage deformation
相關次數: 點閱:102下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著生醫產品與個性化商品設計件趨於複雜與多樣性,傳統製造方法以漸趨無法滿足這些需求,積層製造為一可行的解決方案,同時可以節省材料與減輕重量,但在積層製造中常使用鏤空設計來減少重量,但在製造程中容易受到殘留應力導致翹曲變形,其中又以選擇性雷射熔融(Selective Laser Melting; SLM)積層製造最為嚴重,在SLM中使用雷射光光斑半徑約在30 μm,溫度在空間中分布極度不平均勻,而產生劇烈的SLM製程應變而導致加工失敗,所以了解殘留應力在選擇性雷射熔融積層製造中是重要的。
    本論文將實驗方法與模擬方法兩者結合分析SLM製程中殘留應力與翹曲,可大量節省SLM殘留應力模擬的運算資源。藉由實驗方法找尋在SLM製程中重要的物理參數,透過單層掃描實驗與多層掃描實驗分析SLM製程應變後,將此應變帶入有限元素模型中分析殘留應力與翹曲,最終分析結果顯示SLM製程應變受到熔池幾何尺寸與雷射光跡間距的影響,考慮這兩項因素的影響,液-固相變化的應變與計算出的SLM製程應變,兩者數值相似,將此SLM製程應變帶入有限元素模型中可有效預測殘留應力與翹曲趨勢。

    A key challenge in selective laser melting (SLM) addictive manufacturing is the residual stress induced cracking defects and workpiece distortion. The residual stress in the workpiece is resulted from the high thermal gradient around the laser irradiated point, the resolidification of the melted powder metal, and the inelastic constitutive behavior of the workpiece. For estimating the stress in the workpeice, numerical simulations based on coupled optical-thermomechanical theory requires significant computing time. To simplify the analysis, this thesis proposed a semi-inverse approach that first characterize a process strain experimentally and then apply it as the driving force in a subsequent numerical finite element stress model. Because the thermal effect is not considered directly in the simplified model, computational time can be reduced significantly. The proposed procedure was applied to investigate the stress and warpage of a SLM-fabricated SS316L strip. The warpage and stress trends obtained from the simulation agree to experimental measurements and literature data. From the analyses it was shown that the melt pool dimensions including the typical width and depth, and the track-to-track and layer-to-layer overlapping geometries contribute significantly to the process strain magnitude. Furthermore, the effects of SLM process parameters including the laser power and scanning speed can be considered through the melt pool geometry.

    摘要------------------------------------------- I Abstract--------------------------------------- II 致謝------------------------------------------- XII 目錄------------------------------------------- XIII 圖目錄----------------------------------------- XV 表目錄----------------------------------------- XXIII 符號表----------------------------------------- XXIV 第一章 緒論------------------------------------ 1 1.1前言--------------------------------------- 1 1.2文獻回顧----------------------------------- 4 1.3研究目的----------------------------------- 9 第二章 選擇性雷射熔融工件製造與分析------------ 11 2.1機台準備與工件製程------------------------- 11 2.2 成品顯微分析與翹曲量測-------------------- 19 第三章 選擇性雷射熔融殘留應力分析-------------- 24 3.1 製程應變分析------------------------------ 24 3.2有限元素模型------------------------------- 30 第四章 結果與討論------------------------------ 37 4.1單層掃描實驗與結果------------------------- 37 4.2多層掃描實驗與結果分析--------------------- 51 4.3多層掃描有限元素模型分析------------------- 59 4.4 分析結果與討論---------------------------- 89 第五章 結論------------------------------------ 97 5.1 結論-------------------------------------- 97 5.2 未來研究方向------------------------------ 99 參考文獻--------------------------------------- 101 附錄A 顯微觀察--------------------------------- 105 附錄B 拉伸實驗--------------------------------- 111 附錄C 微米壓痕測試及奈米壓痕測試--------------- 119

    1.ASTM Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM A262-15, 2015.
    2.ASTM Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM A370-16, 2016.
    3.Deng, D. (2009). FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Materials and Design, 30(2), 359-366. doi:10.1016/j.matdes.2008.04.052
    4.Hussein, A., Hao, L., Yan, C., and Everson, R. (2013). Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Materials and Design (1980-2015), 52, 638-647. doi:10.1016/j.matdes.2013.05.070
    5.Li, C., Liu, J., Fang, X., and Guo, Y. (2017). Efficient predictive model of part distortion and residual stress in selective laser melting. Additive Manufacturing, 17, 157-168. doi: 10.1016/j.addma. 2017.08.014
    6.Mani, M., Feng, S., Lane, B., Donmez, A., Moylan, S., and Fesperman, R. (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology.
    7.Martinson, P., Daneshpour, S., Koçak, M., Riekehr, S., and Staron, P. (2009). Residual stress analysis of laser spot welding of steel sheets. Materials and Design, 30(9), 3351-3359. doi:10.1016/j.matdes.2009.03.041
    8.Mercelis, P., and Kruth, J. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254-265. doi:10.1108/13552540610707013
    9.Olsson, E., and Larsson, P. (2012). On the Effect of Particle Size Distribution in Cold Powder Compaction. Journal of Applied Mechanics, 79(5), 051017. doi:10.1115/1.4006382
    10.Pal, D., and Stueker, B. (2015). A New and Efficient Multi-Scale Simulation Architecture for Prediction of Performance Metrics for Parts Fabricated Using Additive Manufacturing. TMS2015 Supplemental Proceedings, 379-388. doi:10.1002/9781119093466.ch48
    11.Parry, L., Ashcroft, I., and Wildman, R. (2016). Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Additive Manufacturing, 12, 1-15. doi:10.1016/j.addma.2016.05.014z
    12.Saeidi, K., Gao, X., Lofaj, F., Kvetková, L., and Shen, Z. (2015). Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting. Journal of Alloys and Compounds, 633, 463-469. doi:10.1016/j.jallcom.2015.01.249
    13.Wen, S., Shuai, L., Qingsong, W., Yan, C., Sheng, Z., and Yusheng, S. (2014). Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. Journal of Materials Processing Technology, 214(11), 2660-2667. doi:10.1016/j.jmatprotec.2014.06.002
    14.Shiomi, M., Osakada, K., Nakamura, K., Yamashita, T., and Abe, F. (2004). Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Annals, 53(1), 195-198. doi:10.1016/s0007-8506(07)60677-5
    15.Teng, C., Gong, H., Szabo, A., Dilip, J. J., Ashby, K., Zhang, S., . . . Stucker, B. (2016). Simulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components. Journal of Manufacturing Science and Engineering, 139(1), 011009. doi:10.1115/1.4034137
    16.Teng, C., Pal, D., Gong, H., and Stucker, B.(2014). A Two Dimensional Analytical Evaluation of Thermal Fields during Metal Laser Sintering Processes. Solid Freeform fabrication symposium, Univ. of Texas, 1145-1157
    17.Utley, E. (2017, June 29). An Introduction to Designing for Metal 3D Printing. Retrieved from http://blogs.solidworks.com/solidworksblog/2017/06/introduction-designing-metal-3d-printing.html
    18.Yadroitsev, I., and Yadroitsava, I. (2015). Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual and Physical Prototyping, 10(2), 67-76. doi:10.1080/17452759.2015.1026045
    19.Yadroitsev, I. (2009). Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders. Saarbrücken: LAP Lambert Academic Publ.
    20.Zhao, X., Song, B., Zhang, Y., Zhu, X., Wei, Q., and Shi, Y. (2015). Decarburization of stainless steel during selective laser melting and its influence on Youngs modulus, hardness and tensile strength. Materials Science and Engineering: A, 647, 58-61. doi:10.1016/j.msea.2015.08.061
    21.Zhong, Y., Liu, L., Wikman, S., Cui, D., and Shen, Z. (2016). Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. Journal of Nuclear Materials, 470, 170-178. doi:10.1016/j.jnucmat.2015.12.034

    下載圖示 校內:2021-08-20公開
    校外:2021-08-20公開
    QR CODE