| 研究生: |
林隆聖 Lin, Lung-Sheng |
|---|---|
| 論文名稱: |
長期運動改善小腦功能: 粒線體蛋白質表現量的改變以及動作協調和抗毒素能力的改善 Chronic treadmill exercise improves cerebellar functions: Alterations in mitochondrial protein expression, rotarod performance, and toxin resistance |
| 指導教授: |
任卓穎
Jen, Chau-ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 動作協調 、粒線體 、小腦 、跑步機 |
| 外文關鍵詞: | rotarod, OX7-saporin, Purkinje cell, Mfn2, cerebellum, mitochondria, treadmill |
| 相關次數: | 點閱:135 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流行病學及臨床研究指出運動不但能增強骨骼肌及心血管功能,還可改善大腦的認知功能。但運動訓練是否可以改善小腦功能則仍未知。因此本研究欲探討運動對小腦功能的影響。將五週齡雄性Wistar大鼠隨機分為運動組及對照組; 運動組接受八週的中等強度跑步機運動訓練。對照組則不運動。運動訓練結束後,大鼠接受動作協調及平衡能力之行為測試,然後犧牲以取得不同部位的腦組織。以西方點墨法分析各腦區粒線體相關蛋白質的表現,包括Mfn2、OPA1、Drp1和CcOx-IV。結果顯示運動訓練可以改善動作協調及平衡能力,並增加小腦Mfn2和OPA1 (粒線體融合蛋白) 蛋白質表現,但不影響Drp1 (粒線體分裂蛋白)和CcOx-IV (粒線體complex IV)的蛋白質表現。反之,運動訓練並不影響其他腦區粒線體蛋白質的表現,包括感覺皮質區、下視丘前區/後區、海馬迴和杏仁核。為了研究運動是否能改善小腦抵抗毒素所引發之損傷,於運動訓練五週後將OX7-saporin (小腦Purkinje cell毒素)注射至大鼠之側腦室,再繼續運動訓練三週。八週運動訓練完後評估其小腦功能。研究結果發現注射OX7-saporin顯著損害對照組之動作協調及平衡能力,並降低小腦蚓部(特別是在第二、三、五、六和九小葉)和小腦半球(除Crus1小葉外)的Purkinje細胞數目。OX7-saporin對運動組卻未造成明顯的傷害。綜合上述,運動訓練可以改善小腦功能,包含動作協調及平衡能力、粒線體融合蛋白質表現以及對外來毒素的阻抗能力。
Exercise not only strengthens the skeletal muscles and cardiovascular performances but also improves brain cognitive functions. However, it is unclear at present whether and how exercise training improves cerebellar functions. Five-week-old male Wistar rats were divided into exercise and sedentary groups; the former was subjected to 8 weeks of treadmill exercise training at moderate intensity. At the end of training period, they were either tested for rotarod performance or sacrificed to obtain various brain tissues for measuring the expression of mitochondria-related proteins, including Mfn2, OPA1, Drp1, and CcOx-IV. Our results showed that exercise training improved rotarod performance, and increased cerebellar protein levels of Mfn2 and OPA1 (mitochondrial fusion proteins) but not Drp1 (mitochondrial fission protein) and CcOx-IV (a mitochondrial complex IV marker). In contrast, it did not alter the mitochondrial protein levels in other brain areas, including sensory cortex, anterior/posterior hypothalamus, hippocampus, and amygdala. In order to investigate whether exercise improved cerebellar resistance to toxin-induced injury, rats were administered with OX7-saporin (a cerebellar Purkinje cell toxin) into the lateral ventricle during the 5th week of training period and were evaluated for their rotarod performance afterwards. We found that OX7-saporin application to sedentary rats, but not to exercised rats, impaired their rotarod performance and decreased cerebellar Purkinje cell number in the vermis (especially in lobule II, III, V, VI and IX) and in the whole hemisphere (except for lobule Crus1). In summary, chronic exercise improved cerebellar functions, including the rotarod performance, the mitochondrial fusion protein expression, and the resistance to toxin insult.
Aguiar, A.S., Jr., Tuon, T., Albuquerque, M.M., Rocha, G.S., Speck, A.E., Araujo, J.C., Dafre, A.L., Prediger, R.D., and Pinho, R.A. (2008). The exercise redox paradigm in the Down's syndrome: improvements in motor function and increases in blood oxidative status in young adults. J Neural Transm 115, 1643-1650.
Alexander, C., Votruba, M., Pesch, U.E., Thiselton, D.L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., et al. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26, 211-215.
Angner, R.T., Kelly, R.M., Wiley, R.G., Walsh, T.J., and Reuhl, K.R. (2000). Preferential destruction of cerebellar Purkinje cells by OX7-saporin. Neurotoxicol 21, 395-403.
Arkin, S.M. (1999). Elder rehab: a student-supervised exercise program for Alzheimer's patients. Gerontol 39, 729-735.
Ben-Yehudah, G., and Fiez, J.A. (2008). Impact of cerebellar lesions on reading and phonological processing. Ann N Y Acad Sci 1145, 260-274.
Berman, S.B., Pineda, F.J., and Hardwick, J.M. (2008). Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ 15, 1147-1152.
Boveris, A., and Navarro, A. (2008). Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic Biol Med 44, 224-229.
Carro, E., Nunez, A., Busiguina, S., and Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20, 2926-2933.
Carro, E., Trejo, J.L., Busiguina, S., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21, 5678-5684.
Carro, E., Spuch, C., Trejo, J.L., Antequera, D., and Torres-Aleman, I. (2005). Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25, 10884-10893.
Carter, R.J., Morton, J., and Dunnett, S.B. (2001). Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8, Unit 8 12.
Cartoni, R., Leger, B., Hock, M.B., Praz, M., Crettenand, A., Pich, S., Ziltener, J.L., Luthi, F., Deriaz, O., Zorzano, A., et al. (2005). Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567, 349-358.
Cerveny, K.L., Tamura, Y., Zhang, Z., Jensen, R.E., and Sesaki, H. (2007). Regulation of mitochondrial fusion and division. Trends Cell Biol 17, 563-569.
Chan, D.C. (2006). Mitochondrial fusion and fission in mammals. [Review] [106 refs]. Ann Rev Cell Dev Biol 22, 79-99.
Chen, H., and Chan, D.C. (2005). Emerging functions of mammalian mitochondrial fusion and fission. [Review] [63 refs]. Human Mol Genet 14, 283-289.
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200.
Chen, H., McCaffery, J.M., and Chan, D.C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548-562.
Cheung, E.C., McBride, H.M., and Slack, R.S. (2007). Mitochondrial dynamics in the regulation of neuronal cell death. Apoptosis 12, 979-992.
Cotman, C.W., and Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exerc Sport Sci Rev 30, 75-79.
Cui, L., Hofer, T., Rani, A., Leeuwenburgh, C., and Foster, T.C. (2007). Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol Aging 3, 1-7.
Daum, I., and Ackermann, H. (1995). Cerebellar contributions to cognition. Behav Brain Res 67, 201-210.
Desmond, J.E., and Fiez, J.A. (1998). Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cognit Sci 2, 355-362.
Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8, 870-879.
Dunlop, B.W., and Self, R.L. (2008). Exercise for depression: efficacy, safety and clinical trial implications. Psychopharmacol Bull 41, 65-75.
Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71-79.
Fordyce, D.E., and Farrar, R.P. (1991). Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning. Behav Brain Res 46, 123-133.
Fordyce, D.E., and Wehner, J.M. (1993). Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res 619, 111-119.
Gandhi, C.C., Kelly, R.M., Wiley, R.G., and Walsh, T.J. (2000). Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin. Behav Brain Res 109, 37-47.
Garifoli, A., Cardile, V., Maci, T., and Perciavalle, V. (2003). Exercise increases cytochrome oxidase activity in specific cerebellar areas of the rat. Arch Ital Biol 141, 181-187.
Garnier, A., Fortin, D., Zoll, J., N'Guessan, B., Mettauer, B., Lampert, E., Veksler, V., and Ventura-Clapier, R. (2005). Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19, 43-52.
Gobbo, O.L., and O'Mara, S.M. (2005). Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behav Brain Res 159, 21-26.
Gomez-Pinilla, F., Vaynman, S., and Ying, Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28, 2278-2287.
Grandemange, S., Herzig, S., and Martinou, J.C. (2008). Mitochondrial dynamics and cancer. Semin Cancer Biol 19, 50-56.
Hood, D.A., Irrcher, I., Ljubicic, V., and Joseph, A.M. (2006). Coordination of metabolic plasticity in skeletal muscle. J Exper Biol 209, 2265-2275.
Hood, D.A., and Saleem, A. (2007). Exercise-induced mitochondrial biogenesis in skeletal muscle. Nutr Metab Cardiovasc Dis 17, 332-337.
Jahani-Asl, A., Cheung, E.C., Neuspiel, M., MacLaurin, J.G., Fortin, A., Park, D.S., McBride, H.M., and Slack, R.S. (2007). Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem 282, 23788-23798.
Jorgensen, S.B., Jensen, T.E., and Richter, E.A. (2007a). Role of AMPK in skeletal muscle gene adaptation in relation to exercise. Appl Physiol Nutr Metab 32, 904-911.
Jorgensen, S.B., Treebak, J.T., Viollet, B., Schjerling, P., Vaulont, S., Wojtaszewski, J.F., and Richter, E.A. (2007b). Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 292, E331-339.
Kijima, K., Numakura, C., Izumino, H., Umetsu, K., Nezu, A., Shiiki, T., Ogawa, M., Ishizaki, Y., Kitamura, T., Shozawa, Y., et al. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet 116, 23-27.
Kramer, A.F., Hahn, S., Cohen, N.J., Banich, M.T., McAuley, E., Harrison, C.R., Chason, J., Vakil, E., Bardell, L., Boileau, R.A., et al. (1999). Ageing, fitness and neurocognitive function. Nature 400, 418-419.
Labrousse, A.M., Zappaterra, M.D., Rube, D.A., and van der Bliek, A.M. (1999). C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4, 815-826.
Larsen, J.O., Skalicky, M., and Viidik, A. (2000). Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol 428, 213-222.
Leggio, M.G., Mandolesi, L., Federico, F., Spirito, F., Ricci, B., Gelfo, F., and Petrosini, L. (2005). Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163, 78-90.
Liu, Y.F., Chen, H.I., Yu, L., Kuo, Y.M., Wu, F.S., Chuang, J.I., Liao, P.C., and Jen, C.J. (2008). Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem 90, 81-89.
Manfredi, G., and Beal, M.F. (2007). Merging mitochondria for neuronal survival. Nat Med 13, 1140-1141.
Martinsen, E.W. (2008). Physical activity in the prevention and treatment of anxiety and depression. Nord J Psychiatry 47, 25-29.
Mattson, M.P. (2000). Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res 886, 47-53.
Morimoto, K., Tan, N., Nishiyasu, T., Sone, R., and Murakami, N. (2000). Spontaneous wheel running attenuates cardiovascular responses to stress in rats. Pflugers Arch 440, 216-222.
Navarro, A., Gomez, C., Lopez-Cepero, J.M., and Boveris, A. (2004). Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286, R505-511.
Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., et al. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317.
Nolan, B.C., and Freeman, J.H. (2006). Purkinje cell loss by OX7-saporin impairs acquisition and extinction of eyeblink conditioning. Learn Mem 13, 359-365.
Park, J.W., Kwon, Y.H., Lee, M.Y., Bai, D., Nam, K.S., Cho, Y.W., Lee, C.H., and Jang, S.H. (2008). Brain activation pattern according to exercise complexity: a functional MRI study. NeuroRehabilitation 23, 283-288.
Pysh, J.J., and Weiss, G.M. (1979). Exercise During Development Induces an Increase in Purkinje Cell Dendritic Tree Size. Science 206, 230-232.
Reznick, R.M., and Shulman, G.I. (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574, 33-39.
Ridgel, A.L., Vitek, J.L., and Alberts, J.L. (2009). Forced, Not Voluntary, Exercise Improves Motor Function in Parkinson's Disease Patients. Neurorehabil Neural Repair. [Epub ahead of print].
Sacchetti, B., Baldi, E., Lorenzini, C.A., and Bucherelli, C. (2002). Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A 99, 8406-8411.
Stranahan, A.M., Khalil, D., and Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nat Neurosci 9, 526-533.
Stranahan, A.M., Lee, K., Martin, B., Maudsley, S., Golden, E., Cutler, R.G., and Mattson, M.P. (2009). Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 11, 1-11.
van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96, 13427-13431.
van Praag, H., Kempermann, G., and Gage, F.H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2, 266-270.
van Praag, H., Shubert, T., Zhao, C., and Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25, 8680-8685.
van Praag, H. (2009). Exercise and the brain: something to chew on. Trends Neurosci. [Epub ahead of print].
Waite, J.J., Wardlow, M.L., and Power, A.E. (1999). Deficit in selective and divided attention associated with cholinergic basal forebrain immunotoxic lesion produced by 192-saporin; motoric/sensory deficit associated with Purkinje cell immunotoxic lesion produced by OX7-saporin. Neurobiol Learn Mem 71, 325-352.
Waterham, H.R., Koster, J., van Roermund, C.W., Mooyer, P.A., Wanders, R.J., and Leonard, J.V. (2007). A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356, 1736-1741.
Wrenn, C.C., and Wiley, R.G. (2001). Lack of effect of moderate Purkinje cell loss on working memory. Neuroscience 107, 433-445.
Youle, R.J., and Karbowski, M. (2005). Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6, 657-663.