簡易檢索 / 詳目顯示

研究生: 林昆霖
Lin, Kun-Lin
論文名稱: 探討U251細胞低分子量GTP結合蛋白之調節蛋白的功能
Characterizing functions of small GTP-binding protein regulators in U251 cells
指導教授: 李純純
Li, Chun-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 神經膠質母細胞瘤缺氧EMTBIG1BIG2
外文關鍵詞: Glioblastoma, hypoxia, EMT, BIG1, BIG2
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經膠質母細胞瘤 (Glioblastoma)是人類腫瘤中,惡性程度最高以及最具侵略性的原發性腦瘤。神經膠質母細胞瘤中的缺氧微環境與腫瘤的生長、進展和對傳於傳統治療的抗性相關。在缺氧的壓力下,缺氧誘導因子 HIF1-α 的增加會改變侵入相關的分子,對於活化神經膠質瘤細胞的移動性而言是相當重要的。許多報導都指出缺氧會促進許多癌細胞由上皮形態轉變為間質形態,其中也包含神經膠質母細胞瘤。鳥糞嘌呤核苷酸交換因子 BIG1 和 BIG2 (Brefeldin A-Inhibited Guanine Nucleotide-Exchange Protein 1 and 2, BIG1 and BIG2)藉由其 Sec7 domain
    來活化腺嘌呤核苷二磷酸核糖化因子 (ADP-ribosylation factors, ARFs),促使ARFs 由 GDP 構型的失活態轉換為 GTP 構型的活化態,進而調控真核細胞的細胞膜轉運、蛋白質運輸和細胞骨架重建。最近有研究顯示,BIG1 和 BIG2 與細胞遷移時細胞極性的調節與肌動蛋白的動態有關。然而,BIG1 和 BIG2 在神經膠質母細胞瘤中扮演的角色以及神經膠質瘤細胞在氧化壓力下 BIGs 表現的調控,目前仍不清楚。在本篇研究中我們發現,氯化鈷誘導的氧化壓力會影響神經膠質母細胞瘤 U251 的細胞形態、影響細胞上皮-間質形態轉換 (EMT)之指標基因mRNA 和蛋白的表現量、改變細胞增殖指標基因 mRNA 的表現量以及提升磷酸化 AKT 的水平。藉由 Western blot 來分析在氯化鈷處理下,U251 細胞內 BIG1和 BIG2 的蛋白表現。我們使用 siRNA 及 shRNA 專一性標的 BIG1 和 BIG2 來降低 U251 細胞內 BIG1 和/或 BIG2 的表現量。我們也探討 U251 細胞在 BIG1 和/或 BIG2 降低下,對於細胞形態、細胞增殖以及訊息傳遞路徑的影響。在此所得的初步結果,提供我們有用資訊以進一步研究 BIG1 和 BIG2 於腫瘤生長及進展中所扮演角色。

    Glioblastoma, is the most malignant and aggressive primary brain tumor in humans. Hypoxia in glioblastoma and its microenvironment is associated with the tumor growth, progression and resistance to conventional therapy of cancers. The amount of invasionrelated molecules altered by the increase of HIF-1α expression under hypoxic stress is
    an essential event in the activation of glioma cell motility. Several reports indicated that hypoxia is also a well-known inducer of the epithelial to mesenchymal transition (EMT) program in many cancers, include glioblastoma. Brefeldin A-inhibited guanine nucleotide-exchange protein 1 and 2 (BIG1 and BIG2) are well known to activate, via its ~200-amino-acid Sec7 domain, the replacement of ADP-ribosylation factors (ARFs)-bound GDP with GTP to regulate membrane transport, protein trafficking and cytoskeleton remodeling in eukaryotic cells. Recent studies showed that BIG1 and BIG2 are implicated in the regulation of cell polarization and actin dynamics for cell migration. However, little is known about the role of BIG1 and BIG2 in glioblastoma and the regulation of BIGs expression in glioma cells under oxidative stress condition. In this study, we found CoCl2-induced oxidative stress influence cell morphology, affect
    the expression of mRNA and protein levels of epithelial-mesenchymal transition (EMT) markers, change the mRNA expression of cell proliferation markers and elevate the
    pAKT protein level in glioblastoma U251 cells. Protein expression levels of BIG1 and BIG2 in U251 cells after CoCl2 treatment were determined by Western blotting. We
    also used siRNA and shRNA that specific targeting BIG1 and BIG2 to deplete expression of BIG1 and/or BIG2 in U251 cells. Effects of BIG1 and/or BIG2 depletion on U251 cell morphology, cell proliferation, and signaling pathways were examined. The preliminary results obtained here will provide us useful information for further studies of roles of BIG1 and BIG2 in tumor growth and progression.

    目錄 摘要...............I 致謝...............VI 目錄...............VIII 圖目錄..............X 表目錄...............XI 縮寫表..............XII 壹、前言..............1 1-1. 神經膠質母細胞瘤 (Glioblastoma).......1 1-2. 細胞上皮-間質型態的轉換 (epithelial to mesenchymal transition, EMT) 1 1-3. 缺氧 (hypoxia)............2 1-4. 細胞遷移 (migration)...........3 1-5. 腺嘌呤核苷二磷酸核糖化因子 (ADP-ribosylation factors, ARFs)...4 1-6. 鳥糞嘌呤核苷酸交換因子 BIG1 和 BIG2 (Brefeldin A-Inhibited Guanine Nucleotide-Exchange Protein 1 and 2, BIG1 and BIG2).....5 1-7. 研究動機與目的 ...........6 貳、實驗材料與方法............8 2.1. 細胞培養............8 2.2. 細胞轉染 (Transfection).........8 2.3. 逆轉錄聚合酶鍊式反應 (Reverse transcription-PCR, RT-PCR) ..9 2.3.1. 萃取細胞 RNA (Total RNA isolation Kit, GeneDireX)...9 2.3.2. RNA 逆轉錄 cDNA (High-Capacity cDNA Reverse Transcription Kits, Applied Biosystems) .........10 2.3.3. 逆轉錄聚合酶鍊式反應.........10 2.3.4. 定量即時聚合酶鏈鎖反應 (Quantitative real time polymerase chain reaction, Q-PCR)..........11 2.4. 西方點墨法 (Western blot).........11 2.4.1. 製備十二烷基硫酸鈉聚丙烯醯胺凝膠 (SDS-PAGE) ..11 2.4.2. SDS-PAGE 電泳分析.........12 2.4.3. 蛋白質轉漬 (Transfer) ........12 2.4.4. 以抗體偵測蛋白質訊號.........12 2.5. Lentivirus 製備...........13 2.6. Lentivirus 感染 U251 人類腦神經膠質瘤細胞 ......14 2.7. 找出最適嘌呤黴素濃度來篩選受 Lentivirus 感染的細胞...15 2.8. 細胞存活率與增殖 (Cell survival and proliferation).....15 2.8.1 群落形成分析 (Colony Formation Assay).....15 2.8.2 MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-dipheyltetrazolium bromide) assay.............16 2.8.3 計算細胞數量 (Cells counting)........16 2.9. 氯化鈷 (CoCl2)誘導氧化壓力.........17 2.10. 萃取細胞蛋白質..........17 参、結果..............18 3.1. U251 細胞內 BIG1 和/或 BIG2 的表現量.......18 3.2. U251 細胞在氯化鈷處理下之低分子量 GTP 結合蛋白之調控蛋白的表 現量..............18 3.3. U251 細胞形態的改變..........19 3.4. 建構 shRNA stable clones.........20 3.5. 低分子量 GTP 結合蛋白之調控蛋白與氧化壓力對於 U251 細胞的形態 影響..............21 3.6. 細胞存活率和增殖..........21 3.7. EMT 和細胞增殖指標基因 mRNA 的表現量.....22 3.8. EMT 指標蛋白............24 3.9. ERK 和 AKT 的表現量 ..........25 肆、討論..............27 伍、参考文獻..............33 結果圖..............38 圖目錄 Figure. 1. Reduction of BIG1 and/or BIG2 expression in U251 cells...38 Figure. 2. Expression level of small GTP-binding protein regulator in U251 cells after incubation of CoCl2..........39 Figure. 3. Morphological change in U251 cells.......40 Figure. 4. Determination of optimal puromycin concentration. ....42 Figure. 5. Analysis of the knockdown efficiency.......43 Figure. 6. Effects of small GTP-binding protein regulator and oxidative stress on morphological change in U251 cells......44 Figure. 7. Cell viability and proliferation. .........46 Figure. 8. mRNA expression level of EMT and proliferation markers....48 Figure. 9. Protein levels of EMT marker. ........50 Figure. 10. Expression level of ERK and AKT........51 表目錄 附錄一、實驗所需藥品............52 附錄二、siRNA 序列 ...........54 附錄三、PCR 引子序列...........54 附錄四、Q-PCR 引子序列...........55 附錄五、Western blot 使用抗體 ..........56 附錄六、製備 Lentivirus 所用質體及 shRNA 序列.......57

    1. Xu H, et al. (2015) Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. Oncotarget 6(14):11882-11893.
    2. Wen PY & Kesari S (2008) Malignant gliomas in adults. The New England Journal of Medicine 359(5):492-507.
    3. Bonavia R, Inda MM, Cavenee WK, & Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Research 71(12):4055-4060.
    4. Charles NA, Holland EC, Gilbertson R, Glass R, & Kettenmann H (2011) The brain tumor microenvironment. Glia 59(8):1169-1180.
    5. Salmaggi A, et al. (2003) Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. Journal of Neuro-Oncology 62(3):297-303.
    6. Brem S, Cotran R, & Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. Journal of the National Cancer Institute 48(2):347-356.
    7. Yang L, Lin C, Wang L, Guo H, & Wang X (2012) Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Experimental Cell Research 318(19):2417-2426.
    8. Verhaak RG, et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98-110.
    9. Yang J & Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell 14(6):818-829.
    10. Kong D, Li Y, Wang Z, & Sarkar FH (2011) Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins? Cancers 3(1):716-729.
    11. Kalluri R & Weinberg RA (2009) The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119(6):1420-1428.
    12. Thiery JP & Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular cell biology 7(2):131-142.
    13. Evans SM, et al. (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research 10(24):8177-8184.
    14. Joseph JV, et al. (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1alpha-ZEB1 axis. Cancer Letters 359(1):107-116.
    15. Jogi A, et al. (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proceedings of the National Academy of Sciences of the United States of America 99(10):7021-7026.
    16. Yamaguchi H & Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1773(5):642-652.
    17. Yamaguchi H, Wyckoff J, & Condeelis J (2005) Cell migration in tumors. Current Opinion in Cell Biology 17(5):559-564.
    18. Pollard TD & Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453-465.
    19. Gunnersen JM, Spirkoska V, Smith PE, Danks RA, & Tan SS (2000) Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Glia 32(2):146-154.
    20. Wang W, et al. (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Research 64(23):8585-8594.
    21. Chuma M, et al. (2004) Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. Journal of Hepatology 41(4):629-636.
    22. Kahn RA & Gilman AG (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. The Journal of Biological Chemistry 259(10):6228-6234.
    23. Shin HW & Nakayama K (2004) Guanine nucleotide-exchange factors for arf GTPases: their diverse functions in membrane traffic. Journal of Biochemistry 136(6):761-767.
    24. Logsdon Jr JM & Kahn RA (2004) The Arf family tree. Arf Family GTPases, (Springer), pp 1-21.
    25. Tsuchiya M, Price SR, Tsai SC, Moss J, & Vaughan M (1991) Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. The Journal of Biological Chemistry 266(5):2772-2777.
    26. Wright J, Kahn RA, & Sztul E (2014) Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cellular and Molecular Life Sciences : CMLS 71(18):3419-3438.
    27. Volpicelli-Daley LA, Li Y, Zhang CJ, & Kahn RA (2005) Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic. Molecular Biology of the Cell 16(10):4495-4508.
    28. Schlienger S, Campbell S, Pasquin S, Gaboury L, & Claing A (2016) ADP-ribosylation factor 1 expression regulates epithelial-mesenchymal transition and predicts poor clinical outcome in triple-negative breast cancer. Oncotarget 7(13):15811-15827.
    29. Sakagami H, et al. (2006) Distinct spatiotemporal expression of EFA6D, a guanine nucleotide exchange factor for ARF6, among the EFA6 family in mouse brain. Brain Research 1093(1):1-11.
    30. Choi S, et al. (2006) ARF6 and EFA6A regulate the development and maintenance of dendritic spines. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 26(18):4811-4819.
    31. Hernandez-Deviez DJ, Casanova JE, & Wilson JM (2002) Regulation of dendritic development by the ARF exchange factor ARNO. Nature Neuroscience 5(7):623-624.
    32. Jackson CL & Casanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends in Cell Biology 10(2):60-67.
    33. Yamaji R, et al. (2000) Identification and localization of two brefeldin A-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors in a macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America 97(6):2567-2572.
    34. Donaldson JG & Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews. Molecular Cell Biology 12(6):362-375.
    35. Padilla PI, Pacheco-Rodriguez G, Moss J, & Vaughan M (2004) Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. Proceedings of the National Academy of Sciences of the United States of America 101(9):2752-2757.
    36. D'Souza RS, et al. (2014) Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Current Biology : CB 24(11):1187-1198.
    37. Shen X, Hong MS, Moss J, & Vaughan M (2007) BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of integrin beta1. Proceedings of the National Academy of Sciences of the United States of America 104(4):1230-1235.
    38. Li CC, et al. (2011) Effects of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1 proteins on cell polarity and directed migration during wound healing. Proceedings of the National Academy of Sciences of the United States of America 108(48):19228-19233.
    39. Shen X, et al. (2006) Association of brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2) with recycling endosomes during transferrin uptake. Proceedings of the National Academy of Sciences of the United States of America 103(8):2635-2640.
    40. Shen X, et al. (2012) Brefeldin A-inhibited ADP-ribosylation factor activator BIG2 regulates cell migration via integrin beta1 cycling and actin remodeling. Proceedings of the National Academy of Sciences of the United States of America 109(36):14464-14469.
    41. Islam A, et al. (2007) The brefeldin A-inhibited guanine nucleotide-exchange protein, BIG2, regulates the constitutive release of TNFR1 exosome-like vesicles. The Journal of Biological Chemistry 282(13):9591-9599.
    42. Le K, Li CC, Ye G, Moss J, & Vaughan M (2013) Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex. Proceedings of the National Academy of Sciences of the United States of America 110(34):E3162-3170.
    43. Matsuyama R, Okuzaki D, Okada M, & Oneyama C (2015) miR-27b suppresses tumor progression by regulating ARFGEF1 and the focal adhesion signaling. Cancer Science.
    44. Bardon-Cancho EJ, et al. (2014) Periventricular nodular heterotopia and dystonia due to an ARFGEF2 mutation. Pediatric Neurology 51(3):461-464.
    45. Lu N, et al. (2007) Oxidative stress mediates CoCl(2)-induced prostate tumour cell adhesion: role of protein kinase C and p38 mitogen-activated protein kinase. Basic & Clinical Pharmacology & Toxicology 101(1):41-46.
    46. Chandel NS, et al. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America 95(20):11715-11720.
    47. Rao DD, Vorhies JS, Senzer N, & Nemunaitis J (2009) siRNA vs. shRNA: Similarities and differences. Advanced Drug Delivery Reviews 61(9):746-759.
    48. Moazed D & Noller HF (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342(6246):142-148.
    49. Davidoff AN & Mendelow BV (1992) Unexpected cytokinetic effects induced by puromycin include a G2-arrest, a metaphase-mitotic-arrest, and apoptosis. Leukemia Research 16(11):1077-1085.
    50. Lee YS & Wurster RD (1995) Effects of antioxidants on the anti-proliferation induced by protein synthesis inhibitors in human brain tumor cells. Cancer Letters 93(2):157-163.
    51. See WL, Tan IL, Mukherjee J, Nicolaides T, & Pieper RO (2012) Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Research 72(13):3350-3359.
    52. Kondo T, Ezzat S, & Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nature Reviews. Cancer 6(4):292-306.
    53. Dillon LM, et al. (2015) P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer. Oncogene 34(30):3968-3976.
    54. Roskoski R, Jr. (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacological Research 66(2):105-143.
    55. Zhou C, et al. (2013) BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways. Neuroscience 254:361-368.
    56. Li J & Zhou BP (2011) Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer 11:49.
    57. Emadi Baygi M, et al. (2010) Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine 31(4):297-307.
    58. Boulay PL, Cotton M, Melancon P, & Claing A (2008) ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells. The Journal of Biological Chemistry 283(52):36425-36434.
    59. Maier T, Guell M, & Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Letters 583(24):3966-3973.
    60. Li CC, Le K, Kato J, Moss J, & Vaughan M (2016) Enhancement of beta-catenin activity by BIG1 plus BIG2 via Arf activation and cAMP signals. Proceedings of the National Academy of Sciences of the United States of America 113(21):5946-5951.

    無法下載圖示 校內:2021-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE