簡易檢索 / 詳目顯示

研究生: 翁雯娟
Weng, Wen-Chuan
論文名稱: 探討SAPAP3在新生大鼠投予clomipramine所誘導之類強迫症行為發生中所扮演的角色
Exploring the role of SAPAP3 in obsessive-compulsive-like behaviors in neonatal clomipramine-treat rat model
指導教授: 許桂森
Hsu, Kuei-Sen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: 強迫症SAPAP3clomipramine紋狀體
外文關鍵詞: OCD, SAPAP3, clomipramine, striatum
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) 是一個高度表現在紋狀體興奮性突觸的突觸後骨架蛋白。在過去的研究中報導過SAPAP3基因剔除小鼠會出現類強迫性行為及皮質投射到紋狀體的突觸傳遞缺陷。而有趣的是,在最近的文獻中指出,新生大鼠暴露到三環抗憂鬱藥clomipramine可能會在成熟大鼠產生類強迫症行為及症狀。然而,這個新的強迫症研究動物模式其在神經生物學上的依據仍未清楚。因此此研究的主要目的是去探討SAPAP3在新生大鼠投予clomipramine所誘導之類強迫症行為發生中所扮演的角色。實驗結果中,我們發現在大鼠出生第九天到第十六天每天投予兩次clomipramine,在大鼠成年早期進行自發性理毛實驗、埋藏彈珠實驗、明暗箱轉換實驗及架高十字迷宮,可以觀察到新生暴露clomipramine的大鼠有顯著的類強迫症行為。而意外的是,SAPAP3在紋狀體的傳訊核糖核酸及蛋白質表現量並沒有因為新生暴露clomipramine的處理而有顯著性的改變。此外,PSD-95、5-HT1B受體和STEP蛋白在眼窩前額皮質和紋狀體中的蛋白質表現量也沒有因為新生投予clomipramine而改變。有趣的是,給予高頻電刺激後,新生暴露clomipramine的大鼠在紋狀體呈現了比較強的突觸增益現象。這些結果顯示雖然新生暴露clomipramine的大鼠會誘發多重類強迫症症狀,但在這個大鼠模式中,其紋狀體的SAPAP3表現沒有受損。

    Synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) is a postsynaptic scaffolding protein that is highly expressed in striatal excitatory synapses. Previous studies have reported that Sapap3-/- mice exhibit compulsive-like behaviors and dysfunction of cortico-striatal synaptic transmission. Interestingly, a recent study reported that neonatal treatment with the tricyclic antidepressant clomipramine may produce multiple behavioral symptoms in adult rats that are consistent with an obsessive-compulsive disorder (OCD)-like profile in animals. However, the neurobiological basis of this novel model of OCD remains unclear. Thus, the objective of this proposal is to evaluate the role of SAPAP3 at cortico-striatal synapses in neonatal clomipramine treatment-induced OCD-like model. We found that clomipramine exposure in immature rat pups between days 9 and 16 twice daily produced significant OCD-like behaviors in early adulthood by using behavioral tests such as spontaneous grooming behavior, marble burying, light-dark test, and elevated plus maze. To our surprise, both the mRNA and protein levels of SAPAP3 in the striatum were not significantly altered by neonatal clomipramine treatment. In addition, the expression of PSD-95, 5-HT1B receptor and STEP proteins in both the orbitofrontal cortex and the striatum were not altered by neonatal clomipramine treatment. Interestingly, clomipramine-exposed rats show increased high frequency stimulation-induced synaptic potentiation at cortico-striatal synapses. These results suggest that although neonatal clomipramine treatment may induce multiple symptoms consistent OCD-like profile, striatal SAPAP3 remains intact in this model.

    中文摘要 I 英文延伸摘要 III 致謝 VII 目錄 IX 圖目錄 XI 縮寫檢索表 XII 第一章 緒論 1 1-1.強迫症 2 1-2.強迫症的治療 3 1-3.強迫症的成因 3 1-4.強迫症的動物研究模式 5 1-5.新生大鼠暴露clomipramine的強迫症動物研究模式 7 1-6.SAPAP3 (DLGAP3) 8 1-7.研究目的 9 第二章 材料與方法 10 2-1.實驗動物 11 2-2.clomipramine藥物處理 11 2-3.行為實驗 11 2-4.即時聚合酶連鎖反應 13 2-5.西方墨點法 15 2-6.胞外電氣生理學記錄法 18 2-7.microarray 20 2-8.統計分析 20 第三章 實驗結果 21 3-1.大鼠進行分組並給予不同處理 22 3-2.暴露過clomipramine的大鼠在自發性理毛實驗中有較長的理毛時間和較多的理毛次數 22 3-3.暴露過clomipramine的大鼠在埋藏彈珠實驗中掩埋較多的彈珠 23 3-4.暴露過clomipramine的大鼠在明暗箱轉換實驗中探索明箱的時間比較少 23 3-5.暴露過clomipramine的大鼠在架高十字迷宮實驗中呈現較焦慮的狀態 23 3-6.暴露過clomipramine的大鼠在紋狀體腦區中的突觸後蛋白表現情形沒有顯著改變 24 3-7.暴露過clomipramine的大鼠在眼窩前額皮質和紋狀體腦區中的5-HT1B受體表現情形沒有顯著改變 25 3-8.暴露過clomipramine的大鼠在眼窩前額皮質和紋狀體腦區中的STEP蛋白表現情形沒有顯著改變 25 3-9.暴露過clomipramine的大鼠給予高頻電刺激後在紋狀體呈現了比較強的突觸增益現象 26 3-10.利用microarray實驗找出可能改變的基因 27 3-11.暴露過clomipramine的大鼠在紋狀體腦區中的MAP2、NSF、S100a9的mRNA表現量有減少的趨勢 27 第四章 討論 28 4-1.主要研究發現 29 4-2.SAPAP3與人類強迫症的關聯性 29 4-3.血清素系統和新生暴露clomipramine的大鼠模式 31 4-4.在microarray中的發現 32 4-5.新生暴露clomipramine的大鼠模式和其他強迫症動物研究模式 33 4-6.結論 33 第五章 圖表 35 第六章 參考文獻 45

    Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, Gordon JA, Hen R (2013) Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340:1234-1239.
    Albelda N, Joel D (2012) Current animal models of obsessive compulsive disorder: an update. Neuroscience 211:83-106.
    Altemus M, Glowa JR, Galliven E, Leong YM, Murphy DL (1996) Effects of serotonergic agents on food-restriction-induced hyperactivity. Pharmacol Biochem Behav 53:123-131.
    Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3-18.
    Andersen SL (2005) Stimulants and the developing brain. Trends Pharmacol Sci 26:237-243.
    Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68:741-747.
    Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879-881.
    Aouizerate B, Guehl D, Cuny E, Rougier A, Bioulac B, Tignol J, Burbaud P (2004) Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol 72:195-221.
    Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119-126.
    Berridge KC, Aldridge JW, Houchard KR, Zhuang X (2005) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol 3:4.
    Bienvenu OJ, Samuels JF, Riddle MA, Hoehn-Saric R, Liang KY, Cullen BA, Grados MA, Nestadt G (2000) The relationship of obsessive-compulsive disorder to possible spectrum disorders: results from a family study. Biol Psychiatry 48:287-293.
    Bienvenu OJ, Wang Y, Shugart YY, Welch JM, Grados MA, Fyer AJ, Rauch SL, McCracken JT, Rasmussen SA, Murphy DL, Cullen B, Valle D, Hoehn-Saric R, Greenberg BD, Pinto A, Knowles JA, Piacentini J, Pauls DL, Liang KY, Willour VL, Riddle M, Samuels JF, Feng G, Nestadt G (2009) Sapap3 and pathological grooming in humans: Results from the OCD collaborative genetics study. Am J Med Genet B Neuropsychiatr Genet 150B:710-720.
    Bloch MH, Landeros-Weisenberger A, Rosario MC, Pittenger C, Leckman JF (2008) Meta-analysis of the symptom structure of obsessive-compulsive disorder. Am J Psychiatry 2008; 165:1532–1542) 165:1532-1542.
    Boardman L, van der Merwe L, Lochner C, Kinnear CJ, Seedat S, Stein DJ, Moolman-Smook JC, Hemmings SM (2011) Investigating SAPAP3 variants in the etiology of obsessive-compulsive disorder and trichotillomania in the South African white population. Compr Psychiatry 52:181-187.
    Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55-65.
    Burguiere E, Monteiro P, Feng G, Graybiel AM (2013) Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340:1243-1246.
    Chakrabarty K, Bhattacharyya S, Christopher R, Khanna S (2005) Glutamatergic dysfunction in OCD. Neuropsychopharmacology 30:1735-1740.
    Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003) Compulsive behavior in the 5-HT2C receptor knockout mouse. Physiol Behav 78:641-649.
    Crane J, Fagerness J, Osiecki L, Gunnell B, Stewart SE, Pauls DL, Scharf JM, Tourette Syndrome International Consortium for G (2011) Family-based genetic association study of DLGAP3 in Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet 156B:108-114.
    Fineberg NA, Chamberlain SR, Hollander E, Boulougouris V, Robbins TW (2011) Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment. Br J Pharmacol 164:1044-1061.
    Fineberg NA, Reghunandanan S, Brown A, Pampaloni I (2013) Pharmacotherapy of obsessive-compulsive disorder: evidence-based treatment and beyond. Aust N Z J Psychiatry 47:121-141.
    Friedlander L, Desrocher M (2006) Neuroimaging studies of obsessive-compulsive disorder in adults and children. Clin Psychol Rev 26:32-49.
    Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002-1012.
    Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28:343-347.
    Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23-34.
    Gross-Isseroff R, Cohen R, Sasson Y, Voet H, Zohar J (2004) Serotonergic dissection of obsessive compulsive symptoms: a challenge study with m-chlorophenylpiperazine and sumatriptan. Neuropsychobiology 50:200-205.
    Ha TY, Chang KA, Kim J, Kim HS, Kim S, Chong YH, Suh YH (2010) S100a9 knockdown decreases the memory impairment and the neuropathology in Tg2576 mice, AD animal model. PLoS One 5:e8840.
    Hill RA, McInnes KJ, Gong EC, Jones ME, Simpson ER, Boon WC (2007) Estrogen deficient male mice develop compulsive behavior. Biol Psychiatry 61:359-366.
    Holmes A, Li Q, Murphy DL, Gold E, Crawley JN (2003) Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2:365-380.
    Imai A, Nashida T, Shimomura H (2001) mRNA expression of membrane-fusion-related proteins in rat parotid gland. Arch Oral Biol 46:955-962.
    Iwata K, Matsuzaki H, Tachibana T, Ohno K, Yoshimura S, Takamura H, Yamada K, Matsuzaki S, Nakamura K, Tsuchiya KJ, Matsumoto K, Tsujii M, Sugiyama T, Katayama T, Mori N (2014) N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism. Mol Autism 5.
    Joel D (2006) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 30:374-388.
    Johnson M, Lombroso P (2012) A common STEP in the synaptic pathology of diverse neuropsychiatric disorders. Yale J Biol Med 85:481-490.
    Karno M, Golding JM, Sorenson SB, Burnam MA (1988) The epidemiology of obsessive-compulsive disorder in five US communities. Arch Gen Psychiatry 45:1094-1099.
    Mathews CA, Kaur N, Stein MB (2008) Childhood trauma and obsessive-compulsive symptoms. Depress Anxiety 25:742-751.
    Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 16:43-51.
    Mundo E, Richter MA, Sam F, Macciardi F, Kennedy JL (2000) Is the 5-HT(1Dbeta) receptor gene implicated in the pathogenesis of obsessive-compulsive disorder? Am J Psychiatry 157:1160-1161.
    Murphy DL, Moya PR, Fox MA, Rubenstein LM, Wendland JR, Timpano KR (2013) Anxiety and affective disorder comorbidity related to serotonin and other neurotransmitter systems: obsessive-compulsive disorder as an example of overlapping clinical and genetic heterogeneity. Philos Trans R Soc Lond B Biol Sci 368:20120435.
    Nestadt G, Samuels J, Riddle M, Bienvenu OJr, Liang KY, LaBuda M, Walkup J, Grados M, Hoehn-Saric R (2000) A family study of obsessive-compulsive disorder. Arch Gen Psychiatry 57:358-363.
    Njung'e K, Handley S (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63-67.
    Nordstrom EJ, Burton FH (2002) A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry 7:617-625, 524.
    Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA (2003) Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol Psychiatry 53:352-359.
    Ruscio AM, Stein DJ, Chiu WT, Kessler RC (2010) The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15:53-63.
    Ryu S, Oh S, Cho EY, Nam HJ, Yoo JH, Park T, Joo YH, Kwon JS, Hong KS (2011) Interaction between genetic variants of DLGAP3 and SLC1A1 affecting the risk of atypical antipsychotics-induced obsessive-compulsive symptoms. Am J Med Genet B Neuropsychiatr Genet 156B:949-959.
    Schutt J, Falley K, Richter D, Kreienkamp HJ, Kindler S (2009) Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities. J Biol Chem 284:25479-25487.
    Shanahan NA, Velez LP, Masten VL, Dulawa SC (2011) Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry 70:1039-1048.
    Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, Shmelkov E, Kushner JS, Baljevic M, Dincheva I, Murphy AJ, Valenzuela DM, Gale NW, Yancopoulos GD, Ninan I, Lee FS, Rafii S (2010) Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16:598-602.
    Steinhausen HC, Bisgaard C, Munk-Jorgensen P, Helenius D (2013) Family aggregation and risk factors of obsessive-compulsive disorders in a nationwide three-generation study. Depress Anxiety 30:1177-1184.
    Stern L, Zohar J, Cohen R, Sasson Y (1998) Treatment of severe, drug resistant obsessive compulsive disorder with the 5HT1D agonist sumatriptan. Eur Neuropsychopharmacol 8:325-328.
    Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 112:1475-1485.
    Takeuchi M, Hata Y, Hirao K, Toyoda A, Irie M, Takai Y (1997) SAPAPs - A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J Biol Chem 272:11943-11951.
    Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 374:542-546.
    Torres AR, Prince MJ, Bebbington PE, Bhugra D, Brugha TS, Farrell M, Jenkins R, Lewis G, Meltzer H, Singleton N (2006) Obsessive-compulsive disorder: prevalence, comorbidity, impact, and help-seeking in the British National Psychiatric Morbidity Survey of 2000. Am J Psychiatry 163:1978-1985.
    Tsaltas E, Kontis D, Chrysikakou S, Giannou H, Biba A, Pallidi S, Christodoulou A, Maillis A, Rabavilas A (2005) Reinforced spatial alternation as an animal model of obsessive-compulsive disorder (OCD): investigation of 5-HT2C and 5-HT1D receptor involvement in OCD pathophysiology. Biol Psychiatry 57:1176-1185.
    Vogel G, Neill D, Hagler M, Kors D (1990) A new animal model of endogenous depression: a summary of present findings. Neurosci Biobehav Rev 14:85-91.
    Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322-328.
    Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M, Adams JP, Luo J, Dudek SM, Weinberg RJ, Calakos N, Wetsel WC, Feng G (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448:894-900.
    Welch JM, Wang D, Feng G (2004) Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. J Comp Neurol 472:24-39.
    Wolmarans de W, Brand L, Stein DJ, Harvey BH (2013) Reappraisal of spontaneous stereotypy in the deer mouse as an animal model of obsessive-compulsive disorder (OCD): response to escitalopram treatment and basal serotonin transporter (SERT) density. Behav Brain Res 256:545-553.
    Xiao F, Lin LF, Cheng X, Gao Q, Luo HM (2012) Nogo-66 receptor activation inhibits neurite outgrowth and increases beta-amyloid protein secretion of cortical neurons. Mol Med Rep 5:619-624.
    Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40:311-315.
    Zohar J, Greenberg B, Denys D (2012) Obsessive-compulsive disorder. Handb Clin Neurol 106:375-390.
    Zuchner S, Wendland JR, Ashley-Koch AE, Collins AL, Tran-Viet KN, Quinn K, Timpano KC, Cuccaro ML, Pericak-Vance MA, Steffens DC, Krishnan KR, Feng G, Murphy DL (2009) Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol Psychiatry 14:6-9.

    下載圖示 校內:2015-08-20公開
    校外:2015-08-20公開
    QR CODE