| 研究生: |
李沛蓉 Lee, Pei-Jung |
|---|---|
| 論文名稱: |
PEG聚合物錯和溶液法製備氧化鋯薄膜於304不鏽鋼上之醫療應用 Medical application of ZrO2 coating on 304 stainless steel by using PEG polymer complex solution method |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 不銹鋼 、氧化鋯 、薄膜 、生物相容性 |
| 外文關鍵詞: | Stainless steel, ZrO2, Thin film, Biocompability |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了增強不鏽鋼於現今醫學儀器、用具使用上的性質,本研究是針對不鏽鋼表面做鍍膜的改質,以聚合物錯合溶液法製備氧化鋯(ZrO2)的前驅溶液,並以浸鍍法將此前驅溶液披覆於304不鏽鋼基材上,經乾燥熱處理後形成薄膜。
氧化鋯薄膜的微觀結構是以高解析場發射掃描式電子顯微鏡(Ultrahigh-Resolution Scanning Electron Microscopy) 觀測,結晶相是以低掠角X光繞射儀(Grazing incidence X-Ray Diffraction)檢測;其薄膜的表面化學鍵結是以電子光譜儀(Electron Spectroscopy for Chemical Analysis)量測,薄膜的厚度是以表面粗度儀(Alpha-Step Profilometer)量測,且以溶液黏度相互佐證;試片的表面粗糙度及顆粒型態是以AFM(Atomic force microscopy)觀察;生物相容性是以螢光染色分析、MTS及LDH的檢測結果表示之。
經熱處理至200 ℃~ 300 ℃所形成的氧化鋯薄膜為非結晶相,並且是由聚乙二醇(PEG)與鋯離子的錯合物所組成。試片經鍍上氧化鋯薄膜後能降低其粗糙度且提升其表面親水性。隨著前驅溶液黏度的增加,薄膜的厚度也隨之增加。體外測試結果顯示,含PEG之氧化鋯薄膜不但能達到與不銹鋼於現今醫療器材的使用標準,且有較佳的生物相容性,而PEG的添加量,以4.5 wt% 為最佳。
For the application of stainless steel in medical-related equipment, the properties of stainless steel (corrosion resistance, strength and wear resistance) should be enhanced. This study is aimed at the modification of the coating for the stainless steel surface. Zirconia (ZrO2) precursor solution was prepared by polymer complex solution method, and was dip coated on 304 stainless steel substrate to form thin film.
Microstructures and crystal phase of ZrO2 thin film were investigated by the SEM, XRD, and XPS. The thickness and corrosion resistances of ZrO2 thin film were analyzed by Alpha-Step profilometer and potentiodynamic polarization curve, respectively. Atomic force microscopy (AFM) was used to observe surface roughness and particle morphology. Biocompatibility was analyzed by immunocytochemistry, MTS, and LDH assay.
The zirconia thin film was amorphous when the temperature of heat treating was 200~300 ℃, and was composed by the polyethylene alcohol (PEG) with the zirconium ion complexes. The roughness and hydrophilic of stainless steel were improved by coating ZrO2 thin film. The ZrO2 thin films indeed increase the corrosion resistance of stainless steel and have good biocompatibility. The zirconia coatings sample had higher survival ratio and less cytotoxicity than stainless steel. The coating ZrO2 film sample could achieve medical objectives, and the best PEG contents were 4.5 wt%.
[1] S. Kapila, Mechanical properties and clinical applications of orthodonic wires, American journal of orthodontics and dentofacial orthopedics 96 (2) (1989) 100-109.
[2] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions, Corrosion Science 50 (6) (2008) 1796-1806.
[3] C. Valero Vidal, A. Igual Muñoz, Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids, Corrosion Science 50 (7) (2008) 1954-1961.
[4] T.L.S.L. Wijesinghe, D.J. Blackwood, Characterisation of passive films on 300 series stainless steels, Apply Surface Science 253 (2) (2006) 1006-1009.
[5] S.R. R. Di Maggio , L. Fedrizzi, P. Scardi, ZrO2-CeO2 films as protective coatings against dry and wet corrosion of metallic alloys, Surface and Coatings Technology 89 (1997) 292-298.
[6] I. Espitia-Cabrera, H. Orozco-Hernández, R. Torres-Sánchez, M.E. Contreras-Garcı́a, P. Bartolo-Pérez, L. Martı́nez, Synthesis of nanostructured zirconia electrodeposited films on AISI 316L stainless steel and its behaviour in corrosion resistance assessment, Materials Letters 58 (1-2) (2004) 191-195.
[7] G.X. Shen, Y.C. Chen, C.J. Lin, Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method, Thin Solid Films 489 (1-2) (2005) 130-136.
[8] L. Thomé, A. Gentils, J. Jagielski, F. Garrido, T. Thomé, Radiation stability of ceramics: Test cases of zirconia and spinel, Vacuum 81 (10) (2007) 1264-1270.
[9] E. Nouri, M. Shahmiri, H.R. Rezaie, F. Talayian, Investigation of structural evolution and electrochemical behaviour of zirconia thin films on the 316L stainless steel substrate formed via sol–gel process, Surface and Coatings Technology 205 (21-22) (2011) 5109-5115.
[10] J.F. Vente, S. McIntosh, W.G. Haije, H.J.M. Bouwmeester, Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes, Journal of Solid State Electrochemistry 10 (8) (2006) 581-588.
[11] M. Atik, F. P. Luna, M. A. Aegerter, Zirconia sol-gel coatings deposited on 304 and 316L stainless steel for chemical protection in acid media, Journal of materials science letters 15 (1996) 2051-2054.
[12] D.A. Lucca, M.J. Klopfstein, R. Ghisleni, A. Gude, A. Mehner, W. Datchary, Investigation of sol-gel derived ZrO2 thin films by nanoindentation, CIRP Annals - Manufacturing Technology 53 (1) (2004) 475-478.
[13] S. Nagarajan, N. Rajendran, Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications, Journal of Sol-Gel Science and Technology 52 (2) (2009) 188-196.
[14] Z. Wang, Z.J. Zhao, B.J. Yan, Y.L. Li, F. Feng, K. Shi, Z. Han, An orientation competition in yttria-stabilized zirconia thin films fabricated by ion beam assisted sputtering deposition, Thin Solid Films 520 (3) (2011) 1115-1119.
[15] M.V.F. Schlupp, M. Prestat, J. Martynczuk, J.L.M. Rupp, A. Bieberle-Hütter, L.J. Gauckler, Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition, Journal of Power Sources 202 (2012) 47-55.
[16] A.M. Torres-Huerta, M.A. Domínguez-Crespo, E. Onofre-Bustamante, A. Flores-Vela, Characterization of ZrO2 thin films deposited by MOCVD as ceramic coatings, Journal of Materials Science 47 (5) (2011) 2300-2309.
[17] H.H. Huang, C.C. Diao, C.F. Yang, C.J. Huang, Effects of substrate temperatures on the crystallizations and microstructures of electron beam evaporation YSZ thin films, Journal of Alloys And Compounds 500 (1) (2010) 82-86.
[18] M. Mishra, P. Kuppusami, A. Singh, S. Ramya, V. Sivasubramanian, E. Mohandas, Phase evolution in zirconia thin films prepared by pulsed laser deposition, Apply Surface Science 258 (12) (2012) 5157-5165.
[19] A. Díaz-Parralejo, A.L. Ortiz, R. Caruso, Effect of sintering temperature on the microstructure and mechanical properties of ZrO2-3mol%Y2O3 sol–gel films, Ceramics International 36 (8) (2010) 2281-2286.
[20] H.T. Keiji Izumi, M. Murakami, T. Deguchi, A. Morita, Coating of fluorine-doped ZrO2 films on steel sheets by sol-gel method, Journal of Non-Crystalline Solids 121 (1990) 344-347.
[21] R. López Ibáñez, F. Martín, J.R. Ramos-Barrado, D. Leinen, Large area zirconia coatings on galvanized steel sheet, Surface and Coatings Technology 202 (11) (2008) 2408-2412.
[22] C. Martinez, M. Sancy, J.H. Zagal, F.M. Rabagliati, B. Tribollet, H. Torres, J. Pavez, A. Monsalve, M.A. Paez, A zirconia-polyester glycol coating on differently pretreated AISI 316L stainless steel: corrosion behavior in chloride solution, Journal of Solid State Electrochemistry 13 (9) (2008) 1327-1337.
[23] M. Popovici, J. de Graaf, M.A. Verschuuren, P.C.J. Graat, M.A. Verheijen, Zirconia thin film preparation by wet chemical methods at low temperature, Thin Solid Films 519 (2) (2010) 630-634.
[24] Y.M. Yanfeng Gao, Hiromichi Ohta, Kunihito Koumoto, Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution, Chemistry of Materials 16 (2004) 2615-2622.
[25] M. Yoshimura, Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method, Bull. Chem. Soc. 72 (1999) 1427-1443.
[26] 張淑閔, 溶膠-凝膠法製備之二氧化鋯薄膜其化學組成相依之微結構及電子結構之研究, 國立清華大學原子科學系博士論文 (2004).
[27] J. Garcs, The O-Zr (Oxygen-Zirconium) system, Bulletin of Alloy Phase Diagrams 7 (2) (1986) 116-124.
[28] P.M.K. Richard H. J. Hannink, Barry C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, Journal of the American Ceramic Society 83 (3) (2000) 461–487.
[29] K. Negita, Lattice vibrations and cubic to tetragonal phase transition in ZrO2, Acta Metallurgica 37 (1) (1989) 313-317.
[30] G.M. C. Piconi, Zirconia as a ceramic biomaterial, Biomaterials 20 (1999) 1-25.
[31] I. Denry, J.R. Kelly, State of the art of zirconia for dental applications, Dental materials : official publication of the Academy of Dental Materials 24 (3) (2008) 299-307.
[32] M. Hisbergues, S. Vendeville, P. Vendeville, Zirconia: Established facts and perspectives for a biomaterial in dental implantology, Journal of biomedical materials research. Part B, Applied biomaterials 88 (2) (2009) 519-529.
[33] Z.O.H. Y. Josset, A. Zarrinpour, M. Lorenzato, J. J. Adnet, D. Laurent–Maquin1, In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics, Journal of Biomedical Materials Research 47 (1999) 481–493.
[34] S.V. M. Hisbergues, P. Vendeville, Review Zirconia: Established Facts and Perspectives for a Biomaterial in Dental Implantology, Journal of Biomedical Materials Research Part B: Applied Biomaterial 88 (2) (2009) 519-529.
[35] T.H. Patricia Naomi Nanbu, Y. Hamal, A. Shigematsu, Stem cell renewal and contraction of the tunica media caused by a damaged blood vessel following a thick needle stab, European Journal of Drug Metabolism and Pharmacokinetics 32 (3) (2007) 149-162.
[36] 蔡裕榮, 周禮君, 以溶膠凝膠法製備透明導電氧化物薄膜的探討, 國立中正大學化學系 (2002).
[37] L.F. Francis, Sol-Gel methods for oxide coatings, Materials Engineering 13 (1999) 31-82.
[38] M.P. Pechini, Barium Titanium Citrate, Barium Titanate and Processes for Producing Same, U.S. Pat. No. 3 (1969) 231-328.
[39] J.P. Coutures, C. Proust, Barium titanate formation by organic resins formed with mixed citrate, Journal of Materials Science 27 (7) (1992) 1849-1856.
[40] M. Kakihana, Invited Review “Sol-Gel” Preparation of High Temperature Superconducting Oxides, Journal of Sol-Gel Science and Technology 6 (1996) 7-55.
[41] P. Krsko, M. Libera, Biointeractive hydrogels, Materials Today 8 (12) (2005) 36-44.
[42] P. Vermette, L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms, Colloids and Surfaces B: Biointerfaces 28 (2-3) (2003) 153-198.
[43] J.B. Leach, C.E. Schmidt, Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds, Biomaterials 26 (2) (2005) 125-135.
[44] N.B. Graham, Hydrogels for controlled drug delivery, Biomatenals 5 (1984) 27-37.
[45] 李卓翰, 二氧化釩薄膜之製備及其性質研究, 國立成功大學材料科學及工程學系碩士論文 (2006).
[46] R.P. Spiers, W.L. Wilkinson, Free coating of a newtonian liquid onto a vertical surface, Chemical Engineering Science 29 (2) (1974) 389-396.
[47] C.J. Brinker, A.J. Hurd, C.S. Ashley, Fundamentals of sol-gel dip coating, Thin Solid Films 201 (1) (1991) 97-108.
[48] G. Yi, Z. Wu, M. Sayer, Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro‐optic properties, Journal of Applied Physics 64 (5) (1988) 2717-2724.
[49] M. Atik, F. P. Luna, M. A. Aegerter, Zirconia sol-gel coatings deposited on 304 and 316L stainless steel for chemical protection in acid media, Journal of materials science letters 15 (1996) 2051-2054.
[50] M.T. Soo, N. Prastomo, A. Matsuda, G. Kawamura, H. Muto, A.F.M. Noor, Z. Lockman, K.Y. Cheong, Elaboration and characterization of sol-gel derived ZrO2 thin films treated with hot water, Apply Surface Science 258 (13) (2012) 5250-5258.
[51] J.G. Checmanowski, B. Szczygiel, Effect of a ZrO2 coating deposited by the sol-gel method on the resistance of FeCrAl alloy in high-temperature oxidation conditions, Mater. Chem. Phys. 139 (2-3) (2013) 944-952.
[52] X.D. Wang, G.M. Wu, B. Zhou, J. Shen, Effect of crystal structure on optical properties of sol-gel derived zirconia thin films, J. Alloy. Compd. 556 (2013) 182-187.
[53] Y.M. Yanfeng Gao, H. Ohta, K. Koumoto, Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution, Chem. Mater. 16 (2004) 2615-2622.
[54] C.M. Wang, Materials analysis, Cambridge University Press (2001) 73-82.
[55] S. Sakka, K. Makita, Y. Yamamoto, Formation of sheets and coating films from alkoxide solutions, Journal of Non-Crystalline Solids (63) (1984) 223-235.
[56] 許力介, 探討磁場對高分子裂解法生長奈米碳管之研究, 國立中正大學化學工程研究所 (2004).
[57] G.B. Reddy, A modified chemical route for synthesis of zirconia thin films having tunable porosity, Mater. Res. Soc. Symp. Proc. 1074 (2008).
[58] T.L. Barr, An ESCA Study of the Termination of the Passivation of Elemental Metals, The Journal of Physical Chemistry 82 (16) (1978) 1801-1810.
[59] A. R. Brooks, K. Doss, Y. C. Lu, On the Role of Cr in the Passivity of Stainless Steel, Journal of the Electrochemical soceity 133 (12) (1986) 2459-2464.
[60] A. M. Beccaria, G. Castello, Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water, Corrosion Engineering, Science and Technology 30 (4) (1995) 283-287.
[61] H. S. Contarini, C. Rizzo, B.A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Apply Surface Science 51 (1991) 177-183.
[62] W.D. A. Mehner, N. Bleil, H.W. Zoch, The influence of processing on crack formation, microstructure, density and hardness of sol-gel derived zirconia films, Journal of Sol-Gel Science and Technology 36 (2006) 25–32.
[63] C.K. Kang, Y.S. Lee, The surface modification of stainless steel and the correlation between the surface properties and protein adsorption, Journal of materials science, Materials in medicine 18 (7) (2007) 1389-1398.
[64] 李思元, 醫療器材上市前審查考量之利益與風險權衡要素, 當代醫藥法規, 財團法人醫藥品查驗中心 (2013).
[65] M. Hisbergues, S. Vendeville, P. Vendeville, Review Zirconia: established facts and perspectives for a biomaterial in dental implantology, J Biomed Mater Res B Appl Biomater, 88 (2) (2009) 519-529.
[66] 林瑜慧, 利用溶膠凝膠法在316L 不鏽鋼表面製備氧化鋯鍍膜並評估與血管內皮細胞之作用, 國立成功大學材料科學及工程學系碩士論文 (2012).
[67] K.C. Popat, R.W. Johnson, T.A. Desai, Deposited Poly(ethylene glycol) Films for Surface Modification of Microfluidic Systems, Journal of Laboratory Automation 7 (65) (2002)
校內:2016-08-22公開