| 研究生: |
王文嬿 Wang, Wen-Yen |
|---|---|
| 論文名稱: |
果物共發酵對清酒發酵之影響-以鳳梨為例 The Effect of Fruit Co-fermentation on Sake Fermentation-Taking Pineapple as an Example |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 清酒 、發酵 、鳳梨 、多源基因體學 、16sRNA 、ITS |
| 外文關鍵詞: | sake, fermentation, pineapple, metagenomics, 16sRNA, ITS |
| 相關次數: | 點閱:205 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
清酒為日本最具代表性的國酒,是世界上唯一「釀造酒」中酒精濃度最高且飲用溫度最廣的酒種。台灣盛產農產品包含稻米、水果、蔬菜等,但這些農產品常常供過於求,為了不浪費這些農產品本研究利用舊米再製清酒,且嘗試利用台灣金鑽鳳梨加入進行發酵讓清酒可更具台灣特色,也能同時提升產品的經濟價值。並且試驗清酒是否能與果物共發酵之可行性,以及與果物共發酵後其菌相之差別來探討是否會因與果物共發酵而影響其發酵時菌相之改變。
在本研究中發現在細菌方面從階層分析圖、夏農物種多樣性以及非度量多維度分析中在兩種清酒中皆被分成發酵前期與發酵後期兩群,此現象可表明發酵前期與發酵後期有明顯不同之菌相差別。但普通清酒為第10天以前與第15天以後兩群,在鳳梨清酒中則是第15天前與第20天後兩群,文氏圖分出之普通清酒及鳳梨清酒的個別存在OTU雖分別有107與87,但這些OTU之讀序數皆遠低於平均讀序數的1%表示其對影響並不大,其中變化趨勢較大之菌為Leuconostoc與Staphylococcus,也能從散佈圖中看出這兩隻菌交叉點在普通清酒中為第15天前,而在鳳梨清酒中則是第15天後。在相關性分析中Leuconostoc以及Staphylococcus不止在他們兩之間與其他菌以及pH值也有極大的相關性,進而證明Leuconostoc與Staphylococcus為清酒發酵中的關鍵細菌,尤其是Leuconostoc。鳳梨與清酒共發酵菌相變化有延遲及趨勢幅度較小的狀況,且結果也顯示鳳梨清酒酒精含量明顯比普通清酒高,推斷可能Erwinia不只能利用鳳梨的果膠產生更多養份供其他菌做使用外也能產生乙醇及乳酸。另外還首次發現清酒發酵中存在Ornithinibacillus與Erwinia,而這兩隻菌在清酒發酵中的作用值得未來去探討。
從本研究結果觀察到的點可得知鳳梨加入清酒發酵並不會使菌相有太大的改變,加上從台酒檢驗的結果資料顯示也不會因鳳梨加入發酵而產生對人體有害之物質,鳳梨的加入還能使酒精濃度增加,以及清酒的風味增加。
Ever since the 13th Century, sake made from rice has become a grand drink in Japan. Sake is a brewed alcoholic beverage that has the highest alcohol concentration and the largest range of drinking temperature. Crops are often over yielded in Taiwan. Stored rice suffers mold pollution, inevitably reducing the market values. To save the old rice, this study attempts to make sake using rice of Tainung No. 17 mixed with pineapple. Funguses were purchased from BCRC, including BCRC20428 Aspergillus oryzae for koji and BCRC21679 Saccharomyces cerevisiae for fermentation. Metagenomics analysis conducted for identifying microbes for the sake of fermentation. Two bacterial phases were identified, The early fermentation stage (first 10 days), while the late stage (after 15th day) was characterized by results of hierarchical clustering analysis (HCA), Shannon’s index and Non-metric Multidimensional Scaling (NMDS). Interestingly, adding pineapple in fermentation delayed 5 days till maturation. Compared to 107 OTUs in the original sake, OUT(87) were lower in the pineapple sake, likely due to the reads of those OTU are below 1% of total average, though nonsignificant. The correlation analysis revealed that Leuconostoc and Staphylococcus associated with other bacteria and determined by pH values are the domain bacteria for sake fermentation. The changing of the bacterial community in the pineapple sake is slower than the original one. The results showed that the alcohol content of pineapple sake is significantly higher than the original sake. The reason might that Erwinia was not only produced more nutrients for microbial activities by pectin degradation from pineapple. Result was found that Erwinia and Ornithinibacillus were discovered for the first time in the fermentation of sake, and the role of these two bacteria in the fermentation of sake is worthy of future research. From this study, the results showed that the microbial community in the fermentation of sake mixed with pineapple was not more change compared with the original sake. Moreover, the results from the Taiwan Tobacco & Liquor Corporation (TTL) test showed that the pineapple sake has no harmful substances. The addition of pineapple can also increase the alcohol concentration and the flavor of sake.
王華, 張春暉, & 李華. (1996). 乳酸菌在葡萄酒中的應用. 西北農業大學學報, 24(6).
田崎真也. (2017). 日本酒 究極之味 (許郁文, Trans.). 台灣: PCuSER電腦人文化
杉村啓, & Yūko, A. (2016). 日本酒之書:20堂課讓你搞懂現在最流行的酒! (葉韋利, Trans.). 台灣: 時報出版.
邢敏鈺, & 徐巖. (2018). 芝麻香型白酒發酵過程中乳酸菌群結構及功能. 江南大學, 2018(02)(TS261.1).
林志鈞, 張明德, 謝建元, & 李秉真. (2006). 中式白酒成分、口感及消費者行為之分析. Journal of Humanities and Social Sciences, 2(2), 25-35.
張源, 蘭偉, 王明躍, 張新紅, 孫曉璐, 劉文福, & 王士華. (2018). 基於高通量測序的草莓酒發酵過程中的細菌群落分析. Journal of Suzhou University, 33(8).
陳榮坤, 林彥蓉, & 羅正宗. (2012). 水稻新品種臺南16 號之育成. 臺南區農業改良場研究彙報, 60, 1-12.
Arndt, D., Xia, J., Liu, Y., Zhou, Y., Guo, A. C., Cruz, J. A.,Wishart, D. S. (2012). METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res, 40(Web Server issue), W88-95. doi:10.1093/nar/gks497
Avallone, S., Guyot, B., Brillouet, J. M., Olguin, E., & Guiraud, J. P. (2001). Microbiological and biochemical study of coffee fermentation. Curr Microbiol, 42(4), 252-256. doi:10.1007/s002840110213
Bagheri, M., Amoozegar, M. A., Schumann, P., Didari, M., Mehrshad, M., Sproer, C., Ventosa, A. (2013). Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol, 63(Pt 3), 844-848. doi:10.1099/ijs.0.041350-0
BD, O., NH, B., & AM, P. (2011). Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12, 385.
Bokulich, N. A., Ohta, M., Lee, M., & Mills, D. A. (2014). Indigenous bacteria and fungi drive traditional kimoto sake fermentations. Appl Environ Microbiol, 80(17), 5522-5529. doi:10.1128/AEM.00663-14
Chen, K., & Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol, 1(2), 106-112. doi:10.1371/journal.pcbi.0010024
De Muynck, C., Pereira, C. S., Naessens, M., Parmentier, S., Soetaert, W., & Vandamme, E. J. (2007). The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Crit Rev Biotechnol, 27(3), 147-171. doi:10.1080/07388550701503584
Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res, 45(W1), W180-W188. doi:10.1093/nar/gkx295
EE, V., F, S., HG, H., EG, Z., WM, d. V., & AD, A. (2000). A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol, 1(1), 1-12.
Garcia-Mazcorro, J. F., Kawas, J. R., & Marroquin-Cardona, A. G. (2019). Descriptive Bacterial and Fungal Characterization of Propolis Using Ultra-High-Throughput Marker Gene Sequencing. Insects, 10(11). doi:10.3390/insects10110402
Hackstadt, A. J., & Hess, A. M. (2009). Filtering for increased power for microarray data analysis. BMC Bioinformatics, 10, 11. doi:10.1186/1471-2105-10-11
Handelsmanl, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. CHEMISTRY & BIOLOGY.
HAQ, A., & DAWES, E. A. (1971). Pyruvic Acid Metabolism and Ethanol Formation in Erwinia amylovora. General Microbiology, 68(3), 295-306.
Huang, C.-L., Jian, F.-Y., Huang, H.-J., Chang, W.-C., Wu, W.-L., Hwang, C.-C., Chiang, T.-Y. (2014). Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 66(1), 77-88. doi:10.1007/s13225-014-0281-x
Koyanagi, T., Nakagawa, A., Kiyohara, M., Matsui, H., Tsuji, A., Barla, F.,Kumagai, H. (2016). Tracing microbiota changes in yamahai-moto, the traditional Japanese sake starter. Biosci Biotechnol Biochem, 80(2), 399-406. doi:10.1080/09168451.2015.1095067
Maheshwari, R., Bhutani, N., Bhardwaj, A., & Suneja, D. P. (2019). Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: Bioprospecting their plant growth potential. Biocatalysis and Agricultural Biotechnology 20.
Maheshwari, U., Amutha, S., Anandham, S., Hemalatha, R., Senthil, G., Kwon, N., Natesan. (2019). Characterization of potential probiotic bacteria from ‘panchamirtham’; A Southern Indian ethinic fermented fruit mix. Elsevier Ltd, 116.
Mimura, N., Isogai, A., Iwashita, K., Bamba, T., & Fukusaki, E. (2014). Gas chromatography/mass spectrometry based component profiling and quality prediction for Japanese sake. J Biosci Bioeng, 118(4), 406-414. doi:10.1016/j.jbiosc.2014.04.006
Nilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo, L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol, 17(2), 95-109. doi:10.1038/s41579-018-0116-y
Peay, K. G., Kennedy, P. G., & Bruns, T. D. (2008). Fungal Community Ecology: A Hybrid Beast with a Molecular Master. BioScience, 58(9), 799–810. doi:https://doi.org/10.1641/B580907
Savolainen, V., Cowan, R. S., Vogler, A. P., Roderick, G. K., & Lane, R. (2005). Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci, 360(1462), 1805-1811. doi:10.1098/rstb.2005.1730
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A.,Fungal Barcoding Consortium Author, L. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A, 109(16), 6241-6246. doi:10.1073/pnas.1117018109
Shi-wei, Z., Xi, C., Qi-ding, Z., Zhan-bin, H., Zhen, M., Jin-xue, L.,Zhi-hui, B. (2017). Microbial Communities on the Wine Grape Surfaces of Different Cultivars. Biotechnology Bulletin, 33(3), 128-137.
Swadener, M. L., & Mills, D. A. (2015). How SO2 Additions Influence Microbial Diversity During Fermentation. Wines & Vines.
Usyk, M., Zolnik, C. P., Patel, H., Levi, M. H., & Burk, R. D. (2017). Novel ITS1 Fungal Primers for Characterization of the Mycobiome. mSphere, 2(6). doi:https://doi.org/10.1128/mSphere.00488-17
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocols: a Guide to Methods and Applications, 18, 315–322.
Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A Primer on Metagenomics. PLOS COMPUTATIONAL BIOLOGY. doi:10.1371/journal