| 研究生: |
夏紫婷 Hsia, Tzu-Ting |
|---|---|
| 論文名稱: |
應用裂膜探針式熱線測速儀探討背向階梯流場之紊流特性 Experimental Study on Turbulence Features in Backward-facing Step Flow Field with Split-fiber Film Anemometry |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 背向階梯 、迴流區 、裂膜探針 |
| 外文關鍵詞: | backward-facing step, recirculation zone, split-fiber film |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以建立背向階梯流場完整的資料庫為主要目標,設定四組實驗條件包含兩種不同的突張比(ER=1.13與1.2)與兩種不同的入口自由流平均速度(U_∞=15 m/s與12 m/s),而寬高比均大於10(AR=15與10)以確保近似二維流場現象。藉由不同的入口自由流平均速度與階梯高度來改變初始進口條件之控制參數Reh。
本研究使用二維交叉探針(Dantec, 55P61)搭配熱線測速儀來量測背向階梯流場中的平均速度與紊流統計資訊,另外使用裂膜探針(Dantec, 55R55)來量測背向階梯後方之迴流區與再接觸區,並且建立完善的裂膜探針速度量測法及判斷法則,使其能正確獲得具有正逆速度之流場資訊,而本實驗中所有點的量測皆以數位訊號輸出,其中取樣頻率為10kHz,取樣時間為10秒。
本文中呈現了主流向、縱向的平均速度、紊流強度與紊流動能、雷諾應力以及主流向的偏態係數與峰態係數之紊流統計資訊,其演化過程均隨流場往下游發展先產生而後消散,皆符合紊流能量傳遞的瀑流原理;而利用偏態及峰態係數峰值所定義之邊界層厚度能較真實的描述流場的紊流行為,也比較符合流體現象上真實的物理意義。此外,以自相關係數與功率頻譜來分析流場之積分時間尺度、泰勒時間尺度都取得合理的結果,另外也驗證了慣性區域之能譜圖中能量與頻率呈現指數為-5/3之關係。
The purpose of this thesis is to build up the database of flow through a backward-facing step with four different inlet Reynolds numbers, Reh, which are changed by means of controlling the inlet mean velocity and the step height. The aspect ratio is set larger than 10(AR=15 and 10)in order to ensure quasi-2D motion of flow.
Measurements of mean flow and turbulence statistics in a backward-facing step flow field were taken using a cross-wire probe (55P61) in conjunction with a CTA system. A split-fiber film probe (55R55) was used to investigate reattaching and recirculation flows behind a backward-facing step. In all the experiments, the output signals were digitized and sampled for about 10 s at a frequency of 10 kHz for each measured points.
The streamwise and vertical profiles of mean velocity components turbulence intensities, kinetic energy, Reynolds stresses, skewness coefficient and kurtosis coefficient are presented reasonably and their evolution tendencies are consistent with what are described by the turbulent energy cascade theory. The boundary-layer thickness defined by the high-order correlations of skewness coefficient and kurtosis coefficient can describe the turbulent behaviors more faithfully as compared to the conventional one based on the mean velocity distribution. In addition, auto-correlation coefficients and power spectrum analyses are implement to investigate the Taylor time scale, integral time scale and the results make senses. The energy spectrum distribution showing the power law of -5/3 slope in the inertial subrange are also observed.
[1] Abu-Mulaweh, H. I., Chen, T. S., Armaly, B. F., “ Turbulent mixed convection flow over a backward-facing step––the effect of the step heights,” International Journal of Heat and Fluid Flow, Vol.23, pp.758-765, 2002.
[2] Adams, E. W., and Johnston, J. P., “Flow Structure in the Near-Wall Zone of a Turbulent Separated Flow,” AIAAJ, Vol. 26, No. 8, pp.932-939, 1988.
[3] Adams, E. W., and Johnston, J. P., “Effects of the Separating Shear Layer on the Reattachment Flow Structure Part 1: Pressure and Turbulence Quantities,” Experiments in Fluids, Vol. 6, pp.400-408, 1988.
[4] Adams, E. W., and Johnston, J. P., “Effects of the Separating Shear Layer on the Reattachment Flow Structure Part 2: Reattachment Length and Wall Shear Stress,” Experiments in Fluids, Vol. 6, pp.493-499, 1988.
[5] Alving, Amy E., Fernholz, H. H., “Turbulence measurements around a mild separation bubble and downstream of reattachment,” J. Fluid Mech., Vol. 322, pp. 297-328, 1996.
[6] Armaly, B. F., Durst, F., Pereira, J. C. F., and Schönung, B.,“Experimental and Theoretical Investigation of Backward-Facing Step Flow,” J. Fluid Mech., Vol. 127, pp.473-496, 1983.
[7] Berbee, J. G., Eilzey, J. L., “The effect of aspect ratio on the flow over a rearward-facing step,” Experiments in Fluids, Vol. 7, pp.447-452, 1989.
[8] Bradshaw, P., and de Brederode, V., “Three-dimensional flow in nominally two-dimensional separation bubbles,” Imperial College of Science and Technology, Technical Aero Report No. 72-19, 1972.
[9] Bradshaw, P., and Wong, F. Y. F., “The Reattachment and Relaxation of a Turbulent Shear Layer,” J. Fluid Mech., Vol. 52, part 1, pp.113-135, 1972.
[10] Brown, G. L., and Roshko, A., “On Density Effects and Large Structure in Turbulent Mixing Layers,” J. Fluid Mech., Vol. 64, part 4, pp.775-816, 1974.
[11] Bruun, H. H., “Hot-wire anemomertry – principles and signal analysis,” 1994.
[12] Castro and Dianat, M., “Pulsed wire velocity anemometry near walls,” Experiments in Fluids, Vol. 8(6), pp. 343-352, 1990.
[13] Cherry, N. J., Hillier, R., and Latour, M. E. M. P., “Unsteady Measurements in a Separated and Reattaching Flow,” J. Fluid Mech., Vol. 144, pp.13-46, 1984.
[14] Davidson, P. A., “Turbulence - An introduction for scientists and engineers,” 2003.
[15] Driver, D. M., and Seegmiller, H. L., “Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow,” AIAAJ, Vol. 23, No. 2, pp.163-171, 1985.
[16] Driver, D. M., Seegmiller, H. L., and Marvin, J. G., “Time-Dependent Behavior of a Reattaching Shear Layer,” AIAAJ, Vol. 25, No. 7, pp.914-919, 1987.
[17] Devenport, W. J., and Sutton, E. P., “Near-Wall Behavior of Separated and Reattaching Flows,” AIAAJ, Vol. 29, No. 1, pp.25-31, 1991.
[18] Devenport, W., Evans, G., and Sutton, E., “A traversing pulsed-wire probe for velocity measurements near a wall,” Experiments in Fluids, Vol. 8(6), pp. 336-342, 1990.
[19] Eaton, J. K., Johnston, J. P., and Jeans, A. H., “Measurements in a Reattaching Turbulent Shear Layer,” Rept. IL-5, presented at the Second Symposium on Turbulent Shear Flows, Imperial College, London, July 2-4, 1979.
[20] Eaton, J. K., and Johnston, J. P., “A Review of Research on Subsonic Turbulent Flow Reattachment,” AIAAJ, Vol. 19, No. 9, pp.1093-1100, 1981.
[21] Ercan Erturk, “Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions,” Computers & fluids, 2007.
[22] Etheridge, D. W., and Kemp, P. H., “Measurements of Turbulent Flow Downstream of a Rearward-Facing Step,” J. Fluid Mech., Vol. 86, part 3, pp.545-566, 1978.
[23] Ganji, A. R., and Sawyer, R. F., “Experimental Study of the Flowfield of a Two-Dimensional Premixed Turbulent Flame,” AIAAJ, Vol. 18, No. 7, pp.817-824, 1980.
[24] Ghoniem, A. F., Gagnon, Y., “Vortex Simulation of Laminar Recirculation Flow,” J. Computational Physics, Vol. 68, pp.346-377, 1987.
[25] Gould, R. D., Stevenson, W. H., and Thompson, H. D., “Investigation of Turbulent Transport in an Axisymmetric Sudden Expansion,” AIAAJ, Vol. 28, No. 2, pp.276-283, 1990.
[26] Hall, S.D., Behnia, M., Fletcher, C. A. J., and Morrison, G. L., “Investigation of the secondary corner vortex in a benchmark turbulent backward-facing step using cross-correlation particle imaging velocimetry,” Experiments in Fluids, Vol. 35(2), pp. 139-151, 2003.
[27] Harinaldi, Ueda, T. and Mizomoto, M., “Laser Sheet Imaging of Recirculation Zone of Backward-Facing Step Flow with Gas Injection,” J. Chem. Eng. Japan, Vol. 34, pp.351-359, 2001.
[28] Hasan, M. A. Z., “The Flow over a Backward-Facing Step under Controlled Perturbation : Laminar Separation,” J. Fluid Mech., Vol. 238, pp.73-96, 1992.
[29] Hasebe, Hiroshi, Watanabe, Kenji, Watanabe, Yuki , and Nomura, Takashi, “Experimental study on the flow field between two square cylinders in tandem arrangement,” APCWE VII, 2009.
[30] Heenan, A. F., and Morrison, J. F., “Passive Control of Pressure Fluctuations Generated by Separated Flow,” AIAAJ, Vol. 36, No. 6, pp.1014-1022, 1998.
[31] Heenan, A. F. , Morrison, J. F., “Split-film probes in recirculating flow,” Meas. Sci. Technol, No. 9, pp. 638–649, 1998.
[32] Jovic, S. & Driver, D. M, “Backward-facing step measurement at low Reynolds number, Reh = 5000,” NASA Tech. Mem. 108807, 1994.
[33] Jørgensen, Finn E., “How to measure turbulence with hot-wire anemometers – a practical guide,” 2002.
[34] Kuehn, D. M., “Effects of Adverse Pressure Gradient on the Incompressible Reattaching Flow over a Rearward-Facing Step,” AIAAJ, Vol. 18, No. 3, pp.343-344, 1980.
[35] Le, H., Moin, P., and Kim, J., “Direct numerical simulation of turbulent flow over a backward-facing step,” Journal of Fluid Mechanics, Vol. 330, pp. 349-374, 1997.
[36] Narayanan, M. A. B., Khadgi, Y. N. and Viswanath, P. R., “Similarities in Pressure Distribution in Separate Flow behind Backward-facing Steps,” Aeronautical Quarterly, Vol.25, pp.305-312, 1974.
[37] Kasagi, N., Matsunaga, A., “Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow,” Int. J. Heat and Fluid Flow, Vol. 16, pp. 477-485, 1995.
[38] Panigrahi, P. K., and Acharya, S., “Excited turbulent flow behind a square rib,” Journal of Fluids and Structures, Vol. 20, pp.235-253, 2005.
[39] Perry, A. E., “Hot-Wire Anemometry,” Oxford University Press, 1982.
[40] Piirto, M., Saarenrinne, P., Eloranta, H., and Karvinen, R., “Measuring turbulence energy with PIV in a backward-facing step flow,” Experiments in Fluids, Vol.35, No.3, pp.219-236, 2003.
[41] Piirto, M., Karvinen, A., Ahlstedt, H., Saarenrinne, P., and Karvinen, R., “PIV measurements in square backward-facing step,” Journal of Fluids Engineering, Vol. 129, pp. 984, 2007.
[42] Rani, H.P., Sheu, Tony W.H., Tsai, Eric S. F., “Eddy structures in a transitional backward-facing step flow,” J. Fluid Mech., Vol. 588, pp. 43-58, 2007.
[43] Roger L. Simpson, “Turbulent boundary-layer separation,” Ann. Rev. Fluid Mech., Vol.21, pp.205-234, 1989.
[44] Ruderich, R., Fernholz, H. H., “An experimental investigation of a turbulent shear flow with separation, reverse flow, and reattachment,” J. Fluid Mech., Vol.163, pp. 283-322, 1986.
[45] Yoshie, R., Tanaka, H., Shirasawa, T., “Technique for simultaneously measuring fluctuating velocity, temperature and concentration in non-isothermal flow,” ISME, 2007.
[46] Schram, C., Rambaud, P., Riethmuller, M. L., “Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry,” Experiments in Fluids, Vol. 36, pp. 233-245, 2004.
[47] Shih, Chiang, Ho, Chih-Ming, “Three-dimensional recirculation flow in a backward facing step,” transactions of the ASME Journal of fluids engineering, Vol. 116, pp. 228-232, 1994.
[48] Cao, S., Tamura, T., “Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 94, pp.1-19, 2006.
[49] Simpson, R. L., “Turbulent Boundary-Layer Separation,” Ann. Rev. Fluid Mech., Vol. 21, pp.205-234, 1989.
[50] Spazzini, P. G., Iuso, G., Onorato, M., Zurlo, N., and Cicca, G. M. D., “Unsteady Behavior of Back-Facing Step Flow,” Experiments in Fluids, Vol. 30, pp.551-561, 2001.
[51] Takahashia, T., Ohtsua, T., Yassina, M.F., Katoa, S., and Murakamib, S., “Turbulence characteristics of wind over a hill with a rough surface,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, pp.1697-1706, 2002.
[52] Tennekes, H. and Lumley, J. L., “A first course in turbulence,” 1994.
[53] Tihon, J., Legrand, J., and Legentilhomme, P., “Near-wall investigation of backward-facing step flows,” Experiments in Fluids, Vol. 31, pp. 484-493, 2001.
[54] Troutt, T. R., Scheelke, B., and Norman, T. R., “Organized Structures in a Reattaching Separated Flow Field,” J. Fluid Mech., Vol. 143, pp.413-427, 1984.
[55] Westphal, R. V., Eaton, J. K., and Johnston, J. P., “A new prove for measurement of velocity and wall shear stress in unsteady, reversing flow,” ASME J. of Fluids Energy, Vol.103, 478-482, 1980.
[56] Westphal, R. V., and Johnston, J. P., “Effect of Initial Conditions on Turbulent Reattachment Downstream of a Backward-Facing Step,” AIAAJ, Vol. 22, No. 12, pp.1727-1732, 1984.
[57] Yoshioka, S., Obi, S., and Masuda, S., “Turbulence statistics of periodically perturbed separated flow over backward-facing step,” International Journal of Heat and Fluid Flow, Vol. 22(4), pp. 393-401, 2001.
[58] 李國忠,振動平板對分離流場之影響,國立成功大學航空太空工程研究所碩士論文,1989.
[59] 黃振源,純剪流中後階梯流場特性研究,國立台灣大學應用力學研究所碩士論文,1993.
[60] 陳嘉瑞,以渦量動力學觀點探討垂直振動平板對層流邊界層流場之影響,國立成功大學航空太空研究所博士論文,1995.
[61] 格培文,二維突張流場之不穩定現象,國立台灣大學應用力學研究所碩士論文,1999.
[62] 高昇敬,矩形建築物高寬比對其周遭風場影響之研究,國立中央大學土木工程研究所碩士論文,2000.
[63] 王金燦,渦流溢放過程中低頻擾動之探討,國立成功大學航空太空研究所博士論文,2000.
[64] 黃興閎,背向階梯流場之剪流層非穩態特性研究,國立清華大學動力機械工程學系碩士論文,2004.
[65] 吳善融,應用PIV量測技術於背向階梯流場之探討,國立成功大學航空太空工程學系碩士論文,2007.
[66] 吳韋志,背向階梯下游流場發展之實驗分析,國立成功大學航空太空工程學系碩士論文,2008.