| 研究生: |
蘇宇倫 Su, Yu-Lun |
|---|---|
| 論文名稱: |
藉由多孔性氧化鋅奈米線陣列增強壓電電子以及奈米發電機之效能 Piezotronics and Nanogenerator Enhancement Through Porous ZnO Nanowire Arrays |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 氧化鋅奈米線 、壓電電子學 、奈米發電機 、多孔微結構 |
| 外文關鍵詞: | ZnO nanowires, Piezoelectric effect, Piezotronics, Nanogenerator, porous nanostructure |
| 相關次數: | 點閱:146 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當壓電材料受到外界應力時會產生壓電電勢(piezopotential),再結合半導體材料的特性之下,能將機械能(mechanical energy)轉換為電能的新興電子元件「壓電奈米發電機」(piezoelectric nanogenerator)油然而生;藉由施力來調控行為的裝置「壓電電子」(piezotronics)也同樣是與次世代接軌的重要發明。
本研究裡使用了極穩定的材料合成方法「水熱法」。首先將(001)矽基板經標準程序清洗乾淨,接著使用濺鍍儀在基板鍍上膜厚約200奈米的氧化鋅薄膜作為種子層,隨後配置以同莫耳數比例混合的醋酸鋅與環六亞甲基四胺(HMT)的溶液,在攝氏八十度的低溫下進行九小時氧化鋅奈米線的成長。最後也是最重要的氫氣退火─生成非連續性奈米孔洞結構的關鍵步驟,在加熱爐裡以攝氏550度進行不同的持溫時間對氧化鋅奈米線造孔。
以單根奈米線為基礎進行的電性量測,以及大面積的直流式電流圖(current mapping)都透過原子力顯微鏡在接觸模式(contact mode)底下操作。結果指出,孔洞氧化鋅的輸出電流遠高於原生的奈米線,顯示壓電效率已被提升。同樣的現象也可以在隨施壓不同而變化的電流─電壓曲線圖上觀察到。針對內孔與外孔,正文將透過分析金屬半導體接面的蕭特基能障、載子濃度變化、氫氣─氧化鋅的反應,研究其對壓電效應的影響,最後再以模擬確認並做出總結。
Advances in ZnO nanowires based nanogenerators and strain-gated transistors were achieved by creating pores by hydrogen annealing. The nanogenerators made of porous ZnO nanowires, upon scanning an conductive AFM tip demonstrate 23 times enhancement in output performance. Furthermore, the sensitivity of a single nanowire based strain-gated transistor has been improved as well. We suggest that there are two critical factors contributing to the striking experimental results, which are pores-induced piezoelectric effect enhancement and surface state modification. By analyzing the current-voltage characteristics in conjunction with simulations, detailed mechanisms are discussed. The work demonstrates that porous nanostructures can potentially enhance energy harvesting and pressure sensing for many applications such as portable self-powered nano-device and touch panel related electronics.
[1] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007).
[2] X. Cao, X. Cao, H. Guo, T. Li, Y. Jie, N. Wang, Z. L. Wang, Piezotronic Effect
Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire
Biosensor. ACS Nano. 10, 8038–8044 (2016).
[3] R. Yu, X. Wang, W. Peng, W. Wu, Y. Ding, S. Li, and Z. L. Wang, Piezotronic Effect
in Strain-Gated Transistor of a-Axis GaN Nanobelt. ACS Nano. 9, 9822–9829 (2015).
[4] H. Li, N. Liu, X. Zhang, J. Su, L. Li, Y. Gao, Z. L. Wang, Piezotronic and
piezo-phototronic logic computations using Au decorated ZnO microwires. Nano Energy. 27, 587–594 (2016).
[5] Z. L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 312, 242–246 (2006).
[6] P. X. Gao, J. H. Song, J. Liu and Z. L. Wang, Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Adv. Materials. 19, 67 (2007).
[7] Z. L. Wang, X. Wang, J. Song, J. Liu, and Y. Gaot, Piezoelectric Nanogenerators
for Self-Powered Nanodevices. IEEE Pervasive Computing. 7, 1 (2008).
[8] Y. F. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, Z. L. Wang, Self-Powered System with Wireless Data Transmission. Nano Letters. 11 (6), 2572 (2011).
[9] Y. Zhang, Y. Liu, Z. L. Wang, Fundamental theory of piezotronics. Adv. Mater. 23, 3004–3013 (2011).
[10] Z. L. Wang, Nanogenerators for self-powered devices and systems. Georgia Institute of Technology, SMAR Tech. digital repository (2011).
[11] Z. L. Wang, W. Wu, Piezotronics and piezo-phototronics: Fundamentals and applications. Natl. Sci. Rev. 1, 62–90 (2014).
[12] C. Tang, M. J. S. Spencer, A. S. Barnard, Activity of ZnO polar surfaces: an insight from surface energies. Phys. Chem. Chem. Phys. 16, 22139–44 (2014).
[13] J. Zhou, N. S. Xu, Z. L. Wang, Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Adv. Mater. 18, 2432–2435 (2006).
[14] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee: Low temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294 (2003).
[15] B. Weintraub, Y. L. Deng, and Z. L. Wang, Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis. J. Phys. Chem. C. 111, 10162 (2007).
[16] Ü. Özgüra, Ya. I. Alivov, C. Liu, A. Tekeb, M. A. Reshchikov, S. Doğanc, V. Avrutin, S.-J. Cho, and H. Morkoçd, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).
[17] A. Mang, K. Reimann, St. R¨ubenacke, Solid State Commun. 94, 251 (1995).
[18] O. Schmidt, P. Kiesel, C. G. Van de Walle, N. M. Johnson, J. Nause and G. H. Dohler, Japan. J. Appl. Phys. Part 1, 44 7271 (2005).
[19] M. Max, Theory of Piezoelectricity in Polar Semiconductors. 3rd International conference on Nanogenerator and Piezotronics. Rome, Italy. (2016)
[20] Z. L. Wang, Zinc oxide nanostructures: growth, properties and Applications. J. Phys. Condens. Matter. 16, R829-R858 (2004).
[21] T. R. Kuykendall, M. V. P. Altoe, D. F. Ogletree, S. Aloni, Catalyst-Directed Crystallographic Orientation Control of GaN Nanowire Growth. Nano Lett. 14, 6767–6773 (2014).
[22] J. Nause, B. Nemeth, Semicond. Sci. Technol. 20, S45 (2005)
[23] F. Bernardini, V. Fiorentini, D. Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024(R) (1997).
[24] A. Beya-Wakata, P.-Y. Prodhomme, G. Bester. First and second-order piezoelectricity in III-V semiconductors. Phys. Rev. B 84, 195207 (2011).
[25] K.-H. Hellwege and O. Madelung, Physics of II-VI and I-VI Compounds, Semimagnetic Semiconductors, LandoltBömestein New Series, Group III, vol. 17, pt. b. Springer- Verlag, Berlin (1982).
[26] S. Muensit, E. M. Goldys, and I. L. Guy, Extensional piezoelectric coefficients of gallium nitride and aluminum nitride Appl. Phys. Lett. 75, 4133 (2000).
[27] I. B. Kobiakov, Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Commun. vol.35, 305 (1980).
[28] X. Ma, H. Zhang, Y. Ji, J. Xu, D. Yang. Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution. Mater. Lett. 59, 3393 (2005).
[29] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Metalorganic vapor-phase epitaxial
growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80, 4232–
4234 (2002).
[30] B. D. Yao, Y. F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757–759 (2002).
[31] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of Semiconducting Oxides. Science. 291, 1947 (2001).
[32] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046–3048 (2002).
[33] M. Andrés Vergés, A. Mifsud and C. J. Serna, Formation of rod-like zinc oxide
microcrystals in homogeneous solutions. J. Chem. Soc., Faraday Trans. 86, 959 (1990).
[34] L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. J. Phys. Chem. B, 105, 3350 (2001).
[35] M. Guo, P. Diao, S. Cai. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. J. Solid State Chem. 178, 1864 (2005).
[36] L. Schmidt-Mende, J. L. MacManus-Driscoll, ZnO – nanostructures, defects, and devices. Mater. Today. 10, 40 (2007).
[37] Donald A. Neamen, Semiconductor physics and devices: basic principles, 4e. McGraw-Hill education.
[38] Z. L. Wang, Preface to the special section on piezotronics. Adv. Mater. 24, 4630–1 (2012).
[39] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z. L. Wang, Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008).
[40] Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, and Z. L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 105, (2009).
[41] R. W. Soutas-Little, Elasticity, XVI, 431; Dover Publications: Mineola, NY, (1999).
[42] L. D. Landau, E. M. Lifshie ¨tı`s, Theory of elasticity; Reading, Mass., Pergamon Press, and Addison-Wesley Pub. Co. London, (1959).
[43] Z. Y. Fan, J. G. Lu, Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes Appl. Phys. Lett. 86, 032111 (2005).
[44] S. M. Sze, Physics of semiconductor devices. 281, John Wiley and Sons, New York, (1981).
[45] J. H. Song, J. Zhou, Z. L. Wang, Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters. 6, 1656 (2006).
[46] E. K. Reilly, E. Carleton, and P. K. Wright, Thin Film Piezoelectric Energy Scavenging Systems for Long Term Medical Monitoring, Proc. Int’l Workshop Wearable and Implantable Body Sensor Networks, IEEE CS Press, 38-41 (2006).
[47] S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, K. S. Lim, Highly textured and conductive undoped ZnO film using hydrogen post-treatment. Appl. Phys. Lett. 70, 3516 (1997).
[48] G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragalà, M. Losurdo, Is there a ZnO face stable to atomic hydrogen? Adv. Mater. 21, 1700–1706 (2009).
[49] J. Ghatak, J. Huang, P. Huang, Y. Shih, C. Liu, Synthesis of Porous Single Crystalline ZnO Nanowires and the Derivation of Surface Free Energy from Equilibrium Nanopore. J. Electrochemical Society. 159, 239–242 (2012).
[50] Zhao Z1, Pu X1, Han C1, Du C1, Li L1, Jiang C1, Hu W1, Wang ZL1,2. Piezotronic Effect in Polarity-Controlled GaN Nanowires. ACSNano. 9, 8, 8578-8573(2015).
[51] W. Liu, A. Zhang, Y. Zhang, Z. L. Wang, First principle simulations of piezotronic transistors. Nano Energy. 14, 355–363 (2015).
[52] Y. Zhang, Y. Hu, S. Xiang, Z. L. Wang, Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Appl. Phys. Lett. 97, 2008–2011 (2010).
[53] Gao, Y. and Z. L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7, 2499–2505 (2007).
[54] V. F. Rivera, F. Auras, P. Motto, S. Stassi, G. Canavese, E. Celasco, T. Bein, B. Onida, V. Cauda, Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires. Chem. - A Eur. J. 19, 14665–14674 (2013).
[55] Y.-T. Changa, J.-Y. Chena, T.-P. Yang, C.-W. Huanga, C.-H. Chiua, P.-H. Yehc, W.-W. Wua, Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications. Nano Energy. 8, 291–296 (2014).
[56] K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, Understanding the factors
that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575–2591 (2004).
[57] L. Spanhel, Colloidal ZnO nanostructures and functional coatings : A survey. Journal of Sol-Gel Science and Technology. 7, 24 (2006).
[58] S. H. Lee, H. J. Lee, H. Goto, M. Cho, T. Yao, Fabrication of porous ZnO nanostructures and morphology control. Phys. Status Solidi. 4, 1747–1750 (2007).
[59] K. Gupta, J.-T. Lin, R.-C. Wang, C.-P. Liu, Porosity-induced full-range visible-light photodetection via ultrahigh broadband antireflection in ZnO nanowires. NPG Asia Mater. 8, e314 (2016).
[60] A. Janotti, C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep Prog Phy. 72, 126501 (2009).
[61] H. F. Wilson, A. S. Barnard, Thermodynamics of Hydrogen Adsorption and
Incorporation at the ZnO(10-10) Surface. J. Phys. Chem. C 119, 26560–26565 (2015).
[62] S. G. Koch, E. V. Lavrov, J. Weber, Towards understanding the hydrogen
molecule in ZnO. Phys. Rev. B - Condens. Matter Mater. Phys. 90, 1–11 (2014).
[63] Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z. L. Wang, Fundamental theories of piezotronics and piezo-phototronics. Nano Energy. 14, 257–275 (2014).
[64] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.-M. Peng, Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 17, 2478–2489 (2007).
[65] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contact, Clarendon,
Oxford (1998).
[66] R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, Z. L. Wang, Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics, Adv. Mater. 24, 26, 3532–3537 (2012).
[67] H. F. Wilson, C. Tang, and A. S. Barnard, Morphology of zinc oxide
nanoparticles and nanowires: Role of surface and edge energies, J. Phys. Chem.
C, 120, 17, 9498–9505 (2016).
[68] X. Zhang, X. Han, J. Su, Q. Zhang, and Y. Gao, Well vertically aligned ZnO
nanowire arrays with an ultra-fast recovery time for UV photodetector, Appl. Phys. A. 107, 255–260 (2012).
[69] Griffiths, J. David, Introduction to Electrodynamics (3rd ed.), Prentice Hall. 175, 179–184, (1998)
校內:2022-06-01公開