| 研究生: |
李玄閔 Lee, Hsuan-min |
|---|---|
| 論文名稱: |
鈰、鋱、和鎂離子摻雜之釔/鋱鋁石榴石螢光粉的製備、結構與螢光性質 Preparation, Structure, and Luminescent Property in Powder Phosphors of Yttrium/Terbium Aluminum Garnets Doping with Cerium, Terbium, and Magnesium Ions |
| 指導教授: |
黃啟原
Huang, Chi-yuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 釔鋁石榴石 、鋱鋁石榴石 、助熔劑 、噴霧乾燥 、氣氛 、晶格場分裂 |
| 外文關鍵詞: | crystal field splitting, atmosphere, spray-drying, flux, YAG, TbAG |
| 相關次數: | 點閱:129 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藍光發光二極體 (light emitting diode, LED) 晶片,搭配鈰摻雜之釔鋁石榴石 (yttrium aluminum garnet doped with cerium, YAG:Ce) 黃色螢光粉的白光產品,肇始了 LED 應用的新紀元,其中高可靠性、製作簡便與低成本等優點是使 YAG 系列產品於光源市場上佔重要地位的依據。本論文除了利用噴霧乾燥製備球形 YAG:Ce 與 YAG:Tb (terbium, 鋱) 螢光粉外,另於 YAG 中大量添加鋱離子並促使螢光主體由 YAG 轉變為鋱鋁石榴石 TbAG (terbium aluminum garnet),主要探討添加濃度、合成溫度與氣氛等對此螢光粉之結構與特性上的影響,內容依序如下。
1. 透過 pH 控制方法,純相的 YAG:Ce 能夠順利被合成出,其中氫氧化鈉 (NaOH) 助熔劑是扮演重要的角色,除此之外,由噴霧乾燥方法所產出球形顆粒也幫助螢光粉達到均勻的凝聚,並產生更適合的光致發光 PL (photoluminescence) 特性。
2. 活化物濃度、相雜質、煆燒條件與粉體結晶性等因素主導螢光粉的 PL 特性,雖本研究產品 (YAG:Ce) 在煆燒後發現大部分有二氧化鈰 (CeO2) 殘留,但是因為有更高的結晶度與較少缺陷 (煆燒在 1500oC/8 h) 而促使產品有更高的發光強度;相反的,殘留 CeO2 的產品 (Ce3+ 添加量: 2.50 at.%) 被發現有較低的發光強度,也因此降低結構參數分析擬合的信賴度與品質。
3. Tb3+ 離子在氧化環境下很容易轉變為 Tb4+,且 Tb4+ 也能藉由在YAG 主體中共添加 Mg2+ (鎂) 離子而被誘導出,比單添加 Tb 離子於 YAG 的螢光粉來說,共添加氧化鎂 (MgO) 會抑制晶粒成長的行為,除此之外,PL 發光強度的降低主要是由 Tb4+ 離子與微結構的缺陷所引起,同時存在 Mg2+ 和 Tb4+ 離子也會對 YAG 晶體結構造成一定的影響。
4. 在 YAG 中釔離子完全的被鋱離子取代可形成 TbAG,PL 和陰極發光 CL (cathodoluminescence) 強度在更高的鋱離子添加時會因濃度而發生粹滅,本研究中比較適當的鋱離子添加量為 15 ~ 20 at.%,且鋱離子濃度是此 YAG/TbAG 固溶系統中最重要的因素,同時影響到粉體微結構、反射和螢光特性、激發光能轉移和晶體結構。
5. Theta-Al2O3 (氧化鋁) 在本階段研究被 alpha-Al2O3 取代成為起始材料,且由與鹽酸(HCl) 溶液比較下,NaOH 溶液也被證實對合成是更有幫助,在 YAG/TbAG 主體中,Ce3+ 離子的晶格場分裂與 Ce3+-O2- 鍵長縮減是被關連到 Ce3+ 的發光特性,其中結構因 Tb3+ 離子添加而膨脹之時,Ce3+ 離子的激發 PL excitation (PLE) 與發光 (PL) 光譜和色度圖也偏移到更長的波長位置,且 Tb3+ 離子 (或 TbAG 主體) 不僅扮演一個不發光角色,也使 (Y/Tb)AG:Ce 系統因高濃度而發光粹滅。
6. 在氮氫混和氣 (N2/H2) 與空氣下分別合成的兩種 YAG-TbAG 固溶體,其吸收與發光光譜特性明顯不同,在空氣氣氛下,Tb 離子由三價轉變成四價是這些光譜改變的重要依據,也因此造成更小的晶格參數,非均勻性加寬的發光光譜明顯出現在 N2/H2 合成的樣品中,但消失於空氣製備的樣品,本系統中,當 Tb3+ 添加量超過 20 at.%,濃度粹滅效應仍然存在。
Blue light emitting diode (LED) chip coated with a yellow yttrium aluminum garnet doped with cerium ions (YAG:Ce) phosphor has led to the commercial production of white LED. The advantages of good reliability, simple preparation, low cost and so on are the reasons why this YAG product has been popular on the market for a long time. This dissertation not only investigates the spherical YAG:Ce and YAG:Tb (terbium) phosphors granulated by a spray-drying method, but also studies the host transition from YAG to TbAG (terbium aluminum garnet) synthesized with the maximum replacement of yttrium ions in YAG. The effects of dopant concentration, temperature and atmosphere used in the synthesis and so forth on structure and property of the system are mainly studied in the dissertation as follows:
1. Pure YAG:Ce can be successfully synthesized without second phase through the pH control. The flux, sodium hydroxide (NaOH) solution, actually acts as an important role. In addition, the spherical particles granulated with the spray-drying method produce the homogeneous agglomerate of phosphors and consequently achieve more favorable photoluminescence (PL) properties in this study.
2. The factors, such as activator concentration, phase impurity, calcination term, and powder crystallinity dominate the PL properties of phosphors. Most of these products (YAG:Ce) are identified as YAG and CeO2 phases after calcination, showing higher emission intensity resulted from higher crystallinity and less defect of phosphor (calcined at 1500oC/8 h). On the contrary, the product with CeO2 is found to have lower emission intensity (Ce3+ doping content: 2.50 at.%), and therefore decrease the reliability and goodness of fit when refining its atomic parameters.
3. Tb3+ ions have a strong trend to transform into Tb4+ ions under an oxidizing environment, and Tb4+ is induced and obtained by incorporating magnesium (Mg2+) ions into YAG host in the study. MgO co-doping restrains the grain growth behavior than single-doped YAG:Tb phosphors. Furthermore, the decrease of PL intensity is mainly caused by Tb4+ ions and the defect of microstructure of phosphor, and the co-existence of Mg2+ and Tb4+ in the YAG matrix also results in some changes in crystal structure.
4. TbAG is the complete solid solution with the maximum replacement for Y ion in YAG. The Tb3+ concentration quenchings of PL and cathodoluminescence (CL) emission intensities with higher Tb doping levels are shown, and the suitable Tb3+ concentration is between 15 ~ 20 at.% in this work. The Tb3+ concentration is the most important factor in YAG/TbAG system in the study, influencing the microstructure of powder, reflective and fluorescent properties, energy transfer of excitation light, and crystal structure.
5. Theta-Al2O3 is replaced by alpha-Al2O3 as one of the starting materials in the system. In addition, NaOH solution is selected for the synthesis as comparing with hydrochloric acid (HCl). The crystal field splitting of Ce3+ in YAG/TbAG host and the lowering of Ce3+-O2- bond lengths are correlated with luminescent properties in this study. PL excitation (PLE) and PL spectra, and chromaticity diagram of Ce3+-garnet shift to a longer wavelength while the structures expand with the increasing content of Tb3+ ions. The Tb3+ ions (or TbAG) not only act as a non-radiative role, but bring the concentration quenching in the (Y/Tb)AG:Ce material.
6. The absorption and luminescence spectra of compounds in YAG-TbAG solid solution synthesized in a N2/H2 (nitrogen/hydrogen) are significantly different from those synthesized in air. The oxidation of Tb from 3+ to 4+ when synthesized in air is the key factor in the variation of spectra, and it also results in smaller lattice constants for the Tb-garnets. The inhomogeneous broadening effect obviously occurs in the phosphors synthesized in N2/H2, but it disappears in the air-prepared system. The concentration quenching is still found because of an excess of Tb3+ doping, at more than 20 at.%, in the system.
[1] 莊賦祥,藍綠光發光二極體,科學發展,349 期,2002.
[2] 楊素華,螢光粉在發光上的應用,科學發展,358 期,2002.
[3] 高亮度發光二極體市場發展趨勢與展望,工業技術研究院 (ITRI),2004.
[4] DE000009 歐盟 RoHS 管制的特定有害物質,TechMax Technical Group, 2007.
[5] 黃以敬,節能 2012 年停產禁用白熾燈,自由時報電子報,2007.
[6] 吳孟庭,不用白熾燈 = 種 2784 萬棵樹,聯合新聞網,2008.
[7] 陳登銘,發光波長可調變螢光粉—材料設計原理與其在白光 LED 上之應用,工業材料雜誌,257 期,2008.
[8] 林志勳,白光 LED 新興市場機會與材料發展趨勢,產業技術資訊服務推廣計畫 (ITIS),經濟部技術處,2005.
[9] 林清海,創造附加價值點亮 LED 產業遠景,技術尖兵,150 期,經濟部技術處,2007.
[10] 林志勳,台灣發光二極體產業發展趨勢與展望,工業材料雜誌,203 期,2003.
[11] 林竹軒,RGB 白光 LED 照明的優勢與展望 (下),工業材料雜誌,251 期, 2007.
[12] 王先知,積極邁向白光 LED 的新光源時代,工業材料雜誌,257 期,2008.
[13] 林志勳,我國 LED 產業現況與國內廠商動態,工業材料雜誌,258 期,2008.
[14] Website: http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap21/ F21-07%20Nichia%20wh%20LED%20structu.jpg
[15] 黃國興、廖仕傑、張均豪,次世代光源製造及設備技術介紹,機械工業雜誌, 2005.
[16] F. Kummer, F. Zwaschka, A. Ellens, A. Debray, G. Waitl, U.S. Patent 6669866, 2003.
[17] J. K. Wu, T. Y. Chen, C. L. Huang, C. Y. Cheng, U.S. Patent 0188655, 2004.
[18] A. M. Srivastava, A. A. Setlur, H. A. Comanzo, U.S. Patent 0195587, 2002.
[19] 陳泰佑、吳瑞孔、黃昭龍、鄭朝元,R.O.C. Patent 200418972, 2004.
[20] 汪秉龍、莊峰輝、林川發,R.O.C. Patent 1245433, 2005.
[21] 安德烈斯艾倫斯、法蘭克傑曼、法蘭茲庫馬、法蘭茲紀瓦舒卡,R.O.C. Patent 090112781, 2001.
[22] 盧慶儒,爭食白光 LED 市場各式螢光粉技術陸續出籠,DigiTimes 電子時報, 2005.
[23] 賴志遠、鄭凱安,氮化鎵 (GaN) 白光二極體專利技術分析,國研科技,2005.
[24] Website: http://www.shsu.edu/~chm_tgc/chemilumdir/JABLONSKI.html
[25] J. A. DeLuca, “An introduction to luminescence in inorganic solids,” J. Chem. Educ. 57 [8] (1980) 541-545.
[26] G. H. Dieke, Spectra and energy levels of rare earth ions in crystals, H. M. Crosswhite, H. Crosswhite (Eds.), Interscience Publishers, New York, 1968.
[27] R. Mueller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8 [2] (2002) 339-345.
[28] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photonics Technol. Lett. 15 [1] (2003) 18-20.
[29] Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, “YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis,” Mater. Res. Bull. 35 (2000) 789-798.
[30] P. Apte, H. Burke, H. Pickup, “Synthesis of yttrium aluminum garnet by reverse strike precipitation,” J. Mater. Res. 7 [3] (1992) 706-711.
[31] M. K. Cinibulk, “Synthesis of yttrium aluminum garnet from a mixed-metal citrate precursor,” J. Am. Ceram. Soc. 83 [5] (2000) 1276-1278.
[32] Y. Zhou, J. Lin, M. Yu, S. Wang, H. Zhang, “Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phsophors,” Mater. Lett. 56 (2002) 628-636.
[33] X. Li, H. Liu, J. Y. Wang, H. M. Cui, F. Han, X. D. Zhang, R. I. Boughton, “Rapid synthesis of YAG nano-sized powders by a novel method,” Mater. Lett. 58 (2004) 2377-2380.
[34] F. Yuan, H. Ryu, “Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation,” Mater. Sci. Eng. B107 (2004) 14-18.
[35] J. Marchal, T. John, R. Baranwal, T. Hinklin, R. M. Laine, “Yttrium aluminum garnet nanopowders produced by liquid-feed flame spray pyrolysis (LF-FSP) of metalloorganic precursors,” Chem. Mater. 16 [5] (2004) 822-831.
[36] R. A. Rodríguez-Rojas, E. D. L. Rosa-Cruz, L. A. Díaz-Torres, P. Salas, R. Meléndrez, M. Barboza-Flores, M. A. Meneses-Nava, O. Barbosa-García, “Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation,” Opt. Mater. 25 (2004) 285-293.
[37] A. Leleckaite, A. Kareiva, “Synthesis of garnet structure compounds using aqueous sol-gel processing,” Opt. Mater. 26 (2004) 123-128.
[38] J. Zárate, R. López, E. A. Aguilar, “Synthesis of yttrium aluminum garnet by modifying the citrate precursor method,” J. Mater. Online 1 (2005) 1-7.
[39] Y. T. Nien, Y. L. Chen, I. G. Chen, C. S. Hwang, Y. K. Su, S. J. Chang, F. S. Juang, “Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatment,” Mater. Chem. Phys. 93 (2005) 79-83.
[40] S. Zhou, Z. Fu, J. Zhang, S. Zhang, “Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+),” J. Lumines. 118 (2006) 179-185.
[41] G. Xu, X. Zhang, W. He, H. Liu, H. Li, R. I. Boughton, “Preparation of highly dispersed YAG nano-sized powder by co-precipitation method,” Mater. Lett. 60 (2006) 962-965.
[42] H. Paul, D. Kessler, U. Herr, “Optical properties of nanocrystalline YAG:Ce,” Solid State Phenom. 140 (2008) 9-16.
[43] Y. T. Nien, K. M. Chen, I. G. Chen, T. Y. Lin, “Photoluminescence enhancement of Y3Al5O12:Ce nanoparticles using HMDS,” J. Am. Ceram. Soc. 91 [11] (2008) 3599-3602.
[44] S. F. Wang, K. K. Rao, Y. C. Wu, Y. R. Wang, Y. F. Hsu, C. Y. Huang, “Synthesis and characterization of Ce3+:YAG phosphors by heterogeneous precipitation using different alumina sources,” Int. J. Appl. Ceram. Technol. doi: 10.1111/j.1744-7402.2008.02275.x (2008).
[45] L. B. Kong, J. Ma, H. Huang, “Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process,” Mater. Lett. 56 (2002) 344-348.
[46] T. Moriga, T. Kunimoto, Y. Sakanaka, T. Yoshida, K. I. Murai, M. Mori, E. Suda, “Low-temperature and rapid solid-state synthesis of YAG:Ce powders using oxides with narrow particle size distribution,” Phys. Stat. Sol. (c) 3 [8] (2006) 2713-2716.
[47] M. S. Tsai, W. C. Fu, G. M. Liu, “Effect of pre-aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method,” J. Alloy. Compd. 440 (2007) 309-314.
[48] H. M. Lee, C. C. Cheng, C. Y. Huang, “The synthesis and optical property of solid-state-prepared YAG:Ce phosphor by a spray-drying method,” Mater. Res. Bull. 44 (2009) 1081-1085.
[49] H. M. Lee, Y. S. Cheng, C. Y. Huang, “The effect of MgO doping on the structure and photoluminescence of YAG:Tb phosphor,” J. Alloy. Compd. 479 (2009) 759-763.
[50] S. W. K. Kweh, K. A. Khor, P. Cheang, “The production and characterization of hydroxyapatite (HA) powders,” J. Mater. Process. Technol. 89-90 (1999) 373-377.
[51] K. Prabhakaran, M. O. Beigh, J. Lakra, N. M. Gokhale, S. C. Sharma, “Characteristics of 8 mol% yttria stabilized zirconia powder prepared by spray drying process,” J. Mater. Process. Technol. 189 (2007) 178-181.
[52] J. S. Reed, Principles of Ceramics Processing, second ed., John Wiley & Sons, Inc. New York, 1995.
[53] S. Kuck, U. Pohlmann, K. Petermann, G. Huber, T. Schonerr, “High resolution spectroscopy of Cr4+ doped Y3Al5O12,” J. Lumines. 60-61 (1994) 192-196.
[54] O. A. Lopez, J. Mckittrick, L. E. Shea, “Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges,” J. Lumines. 71 [1] (1997) 1-11.
[55] K. Ohno, T. Abe, “Effect of BaF2 on the synthesis of the single-phase cubic Y3Al5O12:Tb,” J. Electrochem. Soc.: Solid-state Sci. Technol. 133 [3] (1986) 638-643.
[56] K. Ohno, T. Abe, “The synthesis and particle growth mechanism of bright green phosphor YAG:Tb,” J. Electrochem. Soc.: Solid-state Sci. Technol. 141 [5] (1994) 1252-1254.
[57] Q. Li, L. Gao, D. Yan, “The crystal structure and spectra of nano-scale YAG:Ce3+,” Mater. Chem. Phys. 64 [1] (2000) 41-44.
[58] C. H. Lu, H. C. Hong, R. Jagannathan, “Sol-gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders,” J. Mater. Chem. 12 (2002) 2525-2530.
[59] C. H. Lu, R. Jagannathan, “Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80 [19] (2002) 3608-3610.
[60] X. Li, H. Liu, J. Wang, H. Cui, F. Han, “YAG:Ce nano-sized phosphor particles prepared by a solvothermal method,” Mater. Res. Bull. 39 [12] (2004) 1923-1930.
[61] G. Del Rosario, S. Ohara, L. Mancic, O. Milosevic, “Characterisation of YAG:Ce powders thermal treated at different temperatures,” Appl. Surf. Sci. 238 [1-4] (2004) 469-474.
[62] Y. Pan, M. Wu, Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor,” Mater. Sci. Eng. B 106 [3] (2004) 251-256.
[63] R. Kasuya, T. Isobe, H. Kuma, J. Katano, “Photoluminescence enhancement of PEG-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method,” J. Phys. Chem. B 109 (2005) 22126-22130.
[64] R. Kasuya, T. Isobe, H. Kuma, “Glycothermal synthesis and photoluminescence of YAG:Ce3+ nanophosphors,” J. Alloy. Compd. 408-412 (2006) 820-823.
[65] A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J. Jørgensen, A. Kareiva, “Photoluminescence in sol-gel-derived YAG:Ce phosphors,” J. Cryst. Growth 304 (2007) 361-368.
[66] H. M. Rietveld, “Line profiles of neutron-diffraction peaks for structure refinement,” Acta Cryst. 22 (1967) 151-152.
[67] A. C. Larson, R. B. Von Dreele, General Structure Analysis System, Los Alamos Nat. Lab., Los Alamos, NM 87545, 1985.
[68] Y. S. Lin, R. S. Liu, B. -M. Cheng, “Investigation of the luminescent properties of Tb3+ -substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152 (2005) J41-J45.
[69] 蘇鏘,稀土元素,清華大學出版社,中國大陸北京,2000.
[70] 劉如熹和王健源,白光發光二極體製作技術-21 世紀人類的新曙光,全華圖書,台灣台北,2005.
[71] J. R. Lo, T. Y. Tseng, “Effect of LiCl on the crystallization behavior and luminescence of Y3Al5O12:Tb,” Mater. Chem. Phys. 57 (1998) 95-98.
[72] Y. C. Kang, I. W. Lenggoro, S. B. Park, K. Okuyama, “Photoluminescence characteristics of YAG:Tb phosphor particles with spherical morphology and non-aggregation,” J. Phys. Chem. Solids 60 (1999) 1855-1858.
[73] J. Y. Choe, D. Ravichandran, S. M. Blomquist, K. W. Kirchner, E. W. Forsythe, D. C. Morton, “Cathodoluminescence study of novel sol-gel derived Y3-xAl5O12:Tbx phosphors,” J. Lumines. 93 (2001) 119-128.
[74] K. Y. Jung, D. Y. Lee, Y. C. Kang, “Morphology control and luminescent property of Y3Al5O12:Tb particles prepared by spray pyrolysis,” Mater. Res. Bull. 40 (2005) 2212-2218.
[75] X. Li, H. Liu, J. Wang, H. Cui, S. Yang, I. R. Boughton, “Solvothermal synthesis and luminescent properties of YAG:Tb nano-sized phosphors,” J. Phys. Chem. Solids, 66 (2005) 201-205.
[76] G. Xia, S. Zhou, J. Zhang, S. Wang, J. Xu, “Solution combustion synthesis, structure and luminescence of Y3Al5O12:Tb3+ phosphors,” J. Alloy. Compd. 421 (2006) 294-297.
[77] S. Saxena, “Sol-gel preparation and optical characterization of TbxY3-xAl5O12,” Mater. Lett. 60 (2006) 1315-1318.
[78] H. M. H. Fadlalla, C. C. Tang, “Preparation of Tb3+ -activated Y3Al5O12 monocrystalline nanoparticles using solution combustion technique,” Opt. Mater. 31 (2008) 401-404.
[79] X. Li, Q. Yu, Z. Zeng, X. Jing, “Luminescent properties of amorphous phosphor 1.4Y2O3•2.5Al2O3•0.1Tb2O3 prepared by sol-gel method,” J. Rare Earths 26 (2008) 35-39.
[80] S. A. Gramsch, L. R. Morss, “Synthesis and characterization of charge-substituted garnets YCaLnGa5O12 (Ln = Ce, Pr, Tb),” J. Alloy. Compd. 207/208 (1994) 432-435.
[81] D. Pawlak, Z. Frukacz, Z. Mierczyk, A. Suchocki, J. Zachara, “Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals,” J. Alloy. Compd. 275-277 (1998) 361-364.
[82] J. D. Dana, in: C. Klein, C. S. Hurlbut Jr. (Eds.), Manual of Mineralogy, John Wiley & Sons, New York, 1993.
[83] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, in: J. Chastain, R. C. King Jr. (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Eden Prairie, Minnesota, 1995.
[84] G. Kalkowski, G. Kaindl, G. Wortmann, D. Lentz, S. Krause, “4f-ligand hybridization in CeF4 and TbF4 probed by core-level spectroscopies,” Phys. Rev. B 37 (1988) 1376-1382.
[85] D. A. Pawlak, K. Woźniak, Z. Frukacz, T. L. Barr, D. Fiorentino, S. Seal, “ESCA studies of yttrium aluminum garnets,” J. Phys. Chem. B 103 (1999) 1454-1461.
[86] H. X. Dai, C. F. Ng, C. T. Au, “SrCl2-promoted REOx (RE = Ce, Pr, Tb) catalysts for the selective oxidation of ethane: a study on performance and defect structures for ethane formation,” J. Catal. 199 (2001) 177-192.
[87] A. Martínez-Arias, A. B. Hungría, M. Fernández-García, A. Iglesias-Juez, J. C. Conesa, G. C. Mather, G. Munuera, “Cerium-terbium mixed oxides as potential materials for anodes in solid oxide fuel cells,” J. Power Sources 151 (2005) 43-51.
[88] L. Schuh, R. Metselaar, C. R. A. Catlow, “Computer modeling studies of defect structures and migration mechanisms in yttrium aluminum garnet,” J. Eur. Ceram. Soc. 7 (1991) 67-74.
[89] M. M. Kuklja, “Defects in yttrium aluminium perovskite and garnet crystals: atomistic study,” J. Phys.: Condens. Matter 12 (2000) 2953-2967.
[90] S. J. Bennison, M. P. Harmer, “Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina,” J. Am. Ceram. Soc. 73 (1990) 833-837.
[91] K. K. Soni, A. M. Thompson, M. P. Harmer, D. B. Williams, J. M. Chabala, R. Levi-Setti, “Solute segregation to grain boundaries in MgO-doped alumina,” Appl. Phys. Lett. 66 (1995) 2795-2797.
[92] I. Tanaka, T. Mizoguchi, T. Yamamoto, “XANES and ELNES in ceramic science,” J. Am. Ceram. Soc. 88 (2005) 2013-2029.
[93] M. Nikl, N. Solovieva, M. Dusek, A. Yoshikawa, Y. Kagamitani, T. Fukuda, “Concentration quenching of Tb3+ luminescence in TbxA3-xAl5O12 (A = Yb, Y) single crytals,” J. Ceram. Process. Res. 4 [3] (2003) 112-114.
[94] S. Shionoya, W. M. Yen, Phosphor Handbook, CRC Press LLC, New York, 2000.
[95] G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin Heidelberg, 1994.
[96] Y. N. Xu, W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Phys. Rev. B 59 [16] (1999) 10530-10535.
[97] F. Euler, J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Cryst. 19 (1965) 971-978.
[98] S. Ganschow, D. Klimm, B. M. Epelbaum, A. Yoshikawa, J. Doerschel, T. Fukuda, “Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique,” J. Cryst. Growth 225 (2001) 454-457.
[99] M. Geho, T. Sekijima, T. Fujii, “Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine,” J. Cryst. Growth 267 (2004) 188-193.
[100] M. Geho, T. Sekijima, T. Fujii, “Growth mechnism of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by laser FZ method,” J. Cryst. Growth 275 (2005) e663-e667.
[101] M. Geho, T. Takagi, S. Chiku, T. Fujii, “Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals,” Jpn. J. Appl. Phys. 44 [7A] 4967-4970 (2005).
[102] Y. S. Lin, R. S. Liu, “Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination,” J. Lumines. 122-123 (2007) 580-582.
[103] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Lumines. 126 (2007) 371-377.
[104] M. S. Tsai, G. M. Liu, S. L. Chung, “Fabrication of cerium active terbium aluminum garnet (TAG:Ce) phosphor powder via the solid-state reaction method,” Mater. Res. Bull. 43 (2008) 1218-1222.
[105] M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” Moldavian J. Phys. Sci. 4 [3] (2005) 347-356.
[106] G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Repts. 24 (1969) 131-144.
[107] A. K. Kitai, Solid State Luminescence, Chapman and Hall press, New York, 1993.
[108] J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, L. P. Huang, “A novel synthesis of phase-pure ultrafine YAG:Tb phosphor with different Tb concentration,” Mater. Lett. 57 (2003) 3077-3081.
[109] D. Hreniak, W. Strek, P. Mazur, R. Pazik, M. Zabkowska-Waclawek, “Luminescence properties of Tb3+:Y3Al5O12 nanocrystallites prepared by the sol-gel method,” Opt. Mater. 26 (2004) 117-121.
[110] D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21 [5] (1953) 836-850.
[111] X. Wang, X. Xu, X. Zeng, Z. Zhao, B. Jiang, X. He, J. Xu, “Effect of Yb concentration on the spectroscopic properties of Yb: Y3Al5O12,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 63 (2006) 49-54.
[112] Y. F. Chen, P. K. Lim, S. J. Lim, Y. J. Yang, L. J. Hu, H. P. Chiang, W. S. Tse, “Raman scattering investigation of Yb:YAG crystals grown by the Czochralski method,” J. Raman Spectrosc. 34 (2003) 882-885.
[113] Horiba Jobin Yvon Raman Application Note, Raman Scattering and Fluorescence.
[114] P. Yang, P. Deng, Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumines. 97 (2002) 51-54.
[115] T. Hahn, International Tables for Crystallography, second ed., D. Reidel Publishing Co., Dordrecht, 1987.
[116] Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem. 43 (2004) 7656-7664.
[117] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc.: Solid-State Sci. Technol. 126 [9] (1979) 1550-1555.
[118] J. A. Koningstein, “Energy levels and crystal-field calculations of europium and terbium in yttrium aluminum garnet,” Phys. Rev. 136 [3A] (1964) A717-A725.
[119] C. Kittel, Introduction to Solid State Physics, eighth ed., John Wiley & Sons, Inc., New York, 2005.
[120] T. Y. Tien, E. F. Gibbons, R. G. DeLosh, P. J. Zacmanidis, D. E. Smith, H. L. Stadler, “Ce3+ activated Y3Al5O12 and some of its solid solutions,” J. Electrochem. Soc.: Solid-State Sci. Technol. 120 [2] (1973) 278-281.
[121] J. M. Robertson, M. W. Van Tol, W. H. Smits, J. P. H. Heynen, “Colourshift of the Ce3+ emission in monocrystalline epitaxially grown garnet layers,” Philips J. Res. 36 [1] (1981) 15-30.
[122] Y. D. Huh, Y. S. Cho, Y. R. Do, “The optical properties of (Y1-xGdx)3-z(Al1-yGay)5O12:Cez phosphors for white LED,” Bull. Korean Chem. Soc. 23 [10] (2002) 1435-1438.
[123] J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Choi, H. L. Park, T. W. Kim, “GaN-based white-light-emitting diodes fabricated with a mixture of Ba3MgSi2O8:Eu2+ and Sr2SiO4:Eu2+ phosphors,” Jpn. J. Appl. Phys. 43 [3] (2004) 989-992.
[124] P. D. Rack, P. H. Holloway, “The structure, device physics, and material properties of thin film electroluminescent displays,” Mater. Sci. Eng. R21 (1998) 171-219.
[125] P. Y. Jia, J. Lin, X. M. Han, M. Yu, “Pechini sol-gel deposition and luminescence properties of Y3Al5-x¬GaxO12:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+; 0≦x≦5) thin films,” Thin Solid Films 483 (2005) 122-129.
[126] G. Blasse, A. Bril, “Study of energy transfer from Sb3+, Bi3+, Ce3+ to Sm3+, Eu3+, Tb3+, Dy3+,” J. Chem. Phys. 47 (1967) 1920-1926.
[127] G. W. Berkstresser, J. Shmulovich, T. C. D. Huo, G. Matulis, “Growth parameter optimization and Tb3+ sensitization of Ce3+ activated Y3Al5O12 phosphor,” J. Electrochem. Soc.: Solid-State Sci. Technol. 134 (1987) 2624-2628.
[128] R. Turos-Matysiak, W. Gryk, M. Grinberg, Y. S. Lin, R. S. Liu, “Tb3+ → Ce3+ energy transfer in Ce3+ -doped Y3-xTbxGd0.65Al5¬O12,” J. Phys.: Condens. Matter 18 (2006) 10531-10543.
[129] M. Nazarov, D. Y. Noh, J. Sohn, C. Yoon, “Quantum efficiency of double activated Tb3Al5O12:Ce3+, Eu3+,” J. Solid State Chem. 180 (2007) 2493-2499.
[130] M. Nazarov, D. Y. Noh, J. Sohn, C. Yoon, “Influence of additional Eu3+ coactivator on the luminescence properties of Tb3Al5O12:Ce3+, Eu3+,” Opt. Mater. 30 (2008) 1387-1392.
[131] Y. Zorenko, V. Gorbenko, T. Voznyak, M. Batentschuk, A. Osvet, A. Winnacker, “Luminescence and Tb3+ -Ce3+ -Eu3+ ion energy transfer in single-crystalline films of Tb3Al5O12:Ce, Eu garnet,” J. Lumines. 128 (2008) 652-660.
[132] H. Yang, Y. S. Kim, “Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors,” J. Lumines. 128 (2008) 1570-1576.
[133] J. J. Zhang, J. W. Ning, X. J. Liu, Y. B. Pan, L. P. Huang, “Synthesis of ultrafine YAG:Tb phosphor by nitrate-citrate sol-gel combustion process,” Mater. Res. Bull. 38 (2003) 1249-1256.
[134] A. Putnis, Introduction to Mineral Sciences, Cambridge University Press, Hampshire, 1993.
[135] M. Sekita, Y. Miyazawa, S. Morita, H. Sekiwa, Y. Sato, “Strong Tb3+ emission of TbAlO3 at room temperature,” Appl. Phys. Lett. 65 (1994) 2380-2382.
[136] O. Muller, R. Roy, The Major Ternary Structural Families, Springer-Verlag, New York, 1974.
[137] J. García Solé, L. E. Bausá, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, Inc., New York, 2005.
[138] M. Fox, Optical Properties of Solids, Oxford University Press, Oxford, 2005.