簡易檢索 / 詳目顯示

研究生: 程竑維
Cheng, Hung-Wei
論文名稱: Caveolin-1在由基質軟硬度所調控的focal adhesion的成熟及細胞軟硬度中所扮演的角色
The role of caveolin-1 in substrate stiffness regulated focal adhesion maturation and cell stiffness
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 機械力傳導caveolin-1β-Pix
外文關鍵詞: mechanotransduction, caveolin-1, β-Pix
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Focal adhesions (FAs) 是一由很多蛋白質所組成的且具動態的結構,並可以整合和傳遞外界的機械受力訊息。根據文獻上指出,小 GTPase RhoA 以及肌凝蛋白II 所調控的肌動蛋白纖維收縮力會調控 FAs的成熟。當細胞種在較硬的基質上時,細胞的攤覆能力以及其內的RhoA活性會比較高,伴隨著的是細胞本身的硬度增加,對於這種細胞因外界基質軟硬度不同而有不同的行為特性,將此現象定義為細胞對於基質軟硬度的適應性。在先前實驗室的研究發現:當細胞種於較軟的基質上時,caveolin-1 (Cav-1) 蛋白質的表現量會降低,同時其 FAs的成熟度也會降低。因此本實驗的目的在了解是否軟性基質所造成的Cav-1降解,進而導致細胞的FAs不成熟以及細胞變軟。從本論文我們得知,利用MβCD破壞Cav-1的功能或是利用shRNA抑制Cav-1的表現都會使細胞變軟,此外由shRNA抑制細胞的Cav-1表現能有效的降低其FAs的成熟度且喪失其對基質軟硬度的適應性。相反的,大量表現Cav-1能有效的減少軟性基質所造成的FAs不成熟以及喪失細胞對於基質軟硬度的適應性。最後也發現到Cav-1 的表現和RhoA的活性呈現正相關;另一方面,我們也發現到Cav-1-RhoA 的訊息傳遞會抑制Pak-interacting exchange factor β (β-Pix),Rac1的guanine nucleotide exchange factor (GEF)聚集在FAs上。綜合以上的實驗結果可以得知,Cav-1-RhoA 的訊息傳遞可以調控受基質軟硬度所影響的FAs的成熟以及細胞本身的軟硬度。而Cav-1-RhoA 和 β-Pix-Rac1 之間的關係可能就是扮演調控現象的重要角色。

    Focal adhesions, the large and dynamic protein complexes, integrated and transmitted both the mechanical force and the regulatory signals. Accumulated data indicated that small GTPase RhoA and Myosin II mediated-actomyosin tension played an important role in focal adhesions maturation. When cultured on substrate of varying rigidity, the normal cells increased their spread area, RhoA activity, and cell stiffness as a function of substrate stiffness. Such phenomenon is defined as cell adaptability to substrate stiffness. Our previous studies showed that soft substrate downregulated caveolin-1 (Cav-1) and hindered focal adhesions maturation. Cav-1, the major component of caveolae, has been linked to mechanotransduction for its role in focal adhesions regulation and integrin-mediated actin remodeling. We are interested in how the downregulation of Cav-1 by soft substrate impairs focal adhesions maturation and result in cell softening. Both disruption of Cav-1 function by MβCD and knockdown of Cav-1 by shRNA resulted in cell softening. Moreover, Cav-1 knockdown also impaired focal adhesions maturation on stiff substrate and cell adaptability to substrate stiffness. On the contrary, Cav-1 overexpression in NIH3T3 cell rescued soft substrate-impaired focal adhesions maturation. Ha-RasV12 overexpressed NIH3T3 cells (7-4) exhibited cell softening, loss of cell adaptability to substrate stiffness, and downregulation of Cav-1. The overexpression of Cav-1 in 7-4 cell restored not only cell stiffness but also cell adaptability to substrate stiffness. The expression of Cav-1 is also positively correlated with the RhoA activity. Finally, we found that Cav-1-RhoA signal inversely regulated the accumulation of Pak-interacting exchange factor β (β-Pix), the Rac1 activator, at focal adhesions. Taken together, our data suggest that the Cav-1-RhoA signal regulates substrate stiffness regulated-focal adhesions maturation and subsequently cell stiffness. The seesaw relationship of Cav-1-RhoA and β-Pix-Rac1 may play an important role for the maturation of focal adhesions.

    Abstract----------------2 中文摘要------------------4 誌謝---------------------5 Content-----------------6 Figure content----------7 Introduction------------9 Material and methods----16 Results-----------------23 Discussion--------------30 Conclusion--------------34 References 35

    Beningo KA, Lo CM, Wang YL. (2002). Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions. Methods Cell Biol. 69: 325-39.
    Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL. (2004). Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J Biol Chem. 279 (33): 34614-23.
    Bist A, Fielding PE, Fielding CJ. (1997). Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci U S A. 94 (20): 10693-8.
    Cao H, Courchesne WE, Mastick CC. (2002). A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem. 277 (11): 8771-4.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. (1997). Geometric control of cell life and death. Science. 276 (5317): 1425-8.
    Ciobanasu C, Faivre B, Le Clainche C. (2012). Actin dynamics associated with focal adhesions. Int J Cell Biol. 2012: 941292.
    Chang F, Lemmon CA, Park D, Romer LH. (2007). FAK potentiates Rac1 activation and localization to matrix adhesion sites: a role for betaPIX. Mol Biol Cell. 18 (1): 253-64.
    Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. (2008). Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol. 10 (9): 1039-50.
    Chrzanowska-Wodnicka M, Burridge K. (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 133 (6): 1403-15.
    Couet J, Belanger MM, Roussel E, Drolet MC. (2001). Cell biology of caveolae and caveolin. Adv Drug Deliv Rev. 49 (3): 223-35.
    Deakin NO, Ballestrem C, Turner CE. (2012). Paxillin and Hic-5 interaction with vinculin is differentially regulated by Rac1 and RhoA. PLoS One. 7 (5): e37990.
    Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE. (1999). Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim. 35 (8): 441-8.
    Dubash AD, Menold MM, Samson T, Boulter E, García-Mata R, Doughman R, Burridge K. (2009). Focal adhesions: new angles on an old structure. Int Rev Cell Mol Biol. 277: 1-65.
    Even-Ram S, Artym V, Yamada KM. (2006). Matrix control of stem cell fate. Cell. 126 (4): 645-7.
    Ezratty EJ, Bertaux C, Marcantonio EE, Gundersen GG. (2009). Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol. 187 (5): 733-47.
    Frank PG, Lisanti MP. (2006). Role of caveolin-1 in the regulation of the vascular shear stress response. J Clin Invest. 116 (5): 1222-5.
    Fujimoto T, Kogo H, Nomura R, Une T. (2000). Isoforms of caveolin-1 and caveolar structure. J Cell Sci. 113: 3509-17.
    Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. (2010). Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 26: 315-33.
    Geiger B, Bershadsky A, Pankov R, Yamada KM. (2001). Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2 (11): 793-805.
    Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR. (2008). Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol. 180 (6): 1261-75.
    Grande-García A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA. (2007). Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol. 177 (4): 683-94.
    Hailstones D, Sleer LS, Parton RG, Stanley KK. (1998). Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res. 39 (2): 369-79.
    Helfman DM, Levy ET, Berthier C, Shtutman M, Riveline D, Grosheva I, Lachish-Zalait A, Elbaum M, Bershadsky AD. (1999). Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol Biol Cell. 10 (10):3097-112.
    Hernández-Deviez DJ, Howes MT, Laval SH, Bushby K, Hancock JF, Parton RG. (2008). Caveolin regulates endocytosis of the muscle repair protein, dysferlin. J Biol Chem. 283 (10): 6476-88.
    Hoffman BD, Grashoff C, Schwartz MA. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature. 475 (7356): 316-323.
    Ingber DE. (2003). Mechanobiology and diseases of mechanotransduction. Ann Med. 35 (8): 564-77.
    Ingber DE. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20 (7): 811-27.
    Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, Griffith OL, Chan SK, Jones SJ, Leung SP, Masoudi H, Leung S, Wiseman SM, Nabi IR. (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res. 68 (20): 8210-20.
    Kim DH, Khatau SB, Feng Y, Walcott S, Sun SX, Longmore GD, Wirtz D. (2012). Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci Rep.2: 555.
    Kobayashi T, Sokabe M. (2010). Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions. Curr Opin Cell Biol. 22 (5): 669-76.
    Kuo JC, Han X, Hsiao CT, Yates JR 3rd, Waterman CM. (2011). Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol. 13 (4): 383-93.
    Kuo JC, Han X, Yates JR 3rd, Waterman CM. (2012). Isolation of focal adhesion proteins for biochemical and proteomic analysis. Methods Mol Biol. 757: 297-323.
    Kuo JC. (2013). Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med. 17 (6): 704-12.
    Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T, von Zastrow M. (2010). SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J Cell Biol. 190 (4): 565-74.
    Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol. 14 (11): 1750-75.
    Lee HS, Bellin RM, Walker DL, Patel B, Powers P, Liu H, Garcia-Alvarez B, de Pereda JM, Liddington RC, Volkmann N, Hanein D, Critchley DR, Robson RM. (2004). Characterization of an actin-binding site within the talin FERM domain. J Mol Biol. 343 (3): 771-84.
    Li QS, Lee GY, Ong CN, Lim CT. (2008). AFM indentation study of breast cancer cells. Biochem Biophys Res Commun. 374 (4): 609-13.
    Liu P, Rudick M, Anderson RG. (2002). Multiple functions of caveolin-1. J Biol Chem. 277 (44): 41295-8.
    Ilić D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 377 (6549): 539-44.
    Lo CM, Wang HB, Dembo M, Wang YL. (2000). Cell movement is guided by the rigidity of the substrate. Biophys J. 79 (1): 144-52.
    Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates JR 3rd, Slesinger PA. (2007). A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci. 10 (10): 1249-59.
    Iwanicki MP, Vomastek T, Tilghman RW, Martin KH, Banerjee J, Wedegaertner PB, Parsons JT. (2008). FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibroblasts. J Cell Sci. 121 (Pt 6): 895-905.
    Mora R, Bonilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodriguez-Boulan E. (1999). Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem. 274 (36): 25708-17.
    Murata M, Peränen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci U S A. 92 (22) : 10339-43.
    Nobes CD, Hall A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 81 (1): 53-62.
    Okamoto T, Schlegel A, Scherer PE, Lisanti MP. (1998). Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 273 (10): 5419-22.
    Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS. (2009). Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci U S A. 106 (47): 20087-92.
    Park EK, Park MJ, Lee SH, Li YC, Kim J, Lee JS, Lee JW, Ye SK, Park JW, Kim CW, Park BK, Kim YN. (2009). Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization. J Pathol. 218 (3): 337-49.
    Parton RG, del Pozo MA. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 14 (2): 98-112.
    Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM. (2010). Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol. 188 (6): 877-90.
    Provenzano PP, Keely PJ. (2011). Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci. 124 (Pt 8): 1195-205.
    Raab M, Swift J, Dingal PC, Shah P, Shin JW, Discher DE. (2012). Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol. 199 (4): 669-83.
    Razani B, Woodman SE, Lisanti MP. (2002). Caveolae: from cell biology to animal physiology. Pharmacol Rev. 54 (3):, 431-67.
    Seong J, Wang N, Wang Y. (2013) Mechanotransduction at focal adhesions: from physiology to cancer development. J Cell Mol Med. 17 (5): 597-604.
    Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 93 (12): 4453-61.
    Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD. (2009) Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell. 20 (21): 4531-40.
    Tee SY, Fu J, Chen CS, Janmey PA. (2011). Cell shape and substrate rigidity both regulate cell stiffness. Biophys J. 100 (5): L25-7.
    ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL. (2006). Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J Cell Biol. 172 (5), 759-69.
    Tomar A, Lim ST, Lim Y, Schlaepfer DD. (2009). A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci. 122 (Pt 11): 1852-62.
    Valdes JL, Tang J, McDermott MI, Kuo JC, Zimmerman SP, Wincovitch SM, Waterman CM, Milgram SL, Playford MP. (2011). Sorting nexin 27 protein regulates trafficking of a p21-activated kinase (PAK) interacting exchange factor (β-Pix)-G protein-coupled receptor kinase interacting protein (GIT) complex via a PDZ domain interaction. J Biol Chem. 286 (45): 39403-16.
    Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 6 (2): 154-61.
    Wei WC, Lin HH, Shen MR, Tang MJ. (2008b). Mechanosensing machinery for cells under low substratum rigidity. Am J Physiol Cell Physiol. 295 (6): C1579-89.
    Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol. 144 (6): 1285–1294.

    下載圖示 校內:2018-08-28公開
    校外:2023-01-01公開
    QR CODE