| 研究生: |
蔡育廷 yu-Ting, Tasi |
|---|---|
| 論文名稱: |
稻米芽鞘胰蛋白酶抑制劑抑制能力之研究 The Inhibition Study of the Rice Coleoptile Bowman - Birk Trypsin Inhibitor |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 胰蛋白脢 、稻米芽鞘 、胰蛋白脢抑制劑 |
| 外文關鍵詞: | trypsin inhibitor, trypsin, rice coleoptiles |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從無氧環境下生長的稻米芽鞘,經由陽離子交換管柱與膠體管柱層析的方式,我們分離出一分子量約在16kDa的胰蛋白脢抑制劑,發現此抑制劑為競爭型的抑制行為。為了探討此抑制劑的抑制行為,是否會受到環境上的影響,因此分別在不同的pH值與鎂離子下觀察。發現在pH7.8、pH8.8條件下,抑制劑與酵素有最大活性,在偏弱酸的條件下pH6.8活性較差。而離子濃度的大小,也會影響到抑制劑的抑制能力,實驗發現稻米芽鞘BBI在pH7.8,Mg2+濃度0M、0.5M、1.0M、1.5M、2.0M條件下,其Ki值分別為4.84×10-10M、4.56×10-10M、4.39×10-10M、3.07×10-10M、2.45×10-10M;在相同條件下,大豆BBI在pH7.8,Mg2+濃度0M、0.5M、1.0M、1.5M、2.0M條件下,其Ki值分別為4.21×10-11M、6.24×10-11M、8.46×10-11M、9.34×10-11M、1.18×10-10M。由CD光譜發現,不同pH值下加入抑制劑會改變酵素(trypsin)的二級結構,但是對於三級結構則沒有明顯的改變。二級結構的變化,也可以從Trp螢光得知,加入抑制劑後Trp螢光強度有明顯增加,表示加入BBI抑制劑,Trp殘基的環境有了改變;隨著鎂離子的加入螢光強度變得更強。ANS特性螢光可以作為探測蛋白質疏水性的測量,加入BBI抑制劑後,ANS螢光強度皆有增加的趨勢,即加入BBI抑制劑後,增加了Trypsin疏水性區域;隨著鎂離子的加入,ANS螢光強度度也變得較強,增加了Trypsin疏水性區域。螢光探針MIANS可用來判定半胱胺酸(Cysteine)殘基的數目與含量,發現加入抑制劑後,螢光強度皆有增強的現象,但是隨著鎂離子的加入螢光強度卻有降低的現象。
A 16 kDa protease inhibitor had been purified from rice coleoptiles grown in hypoxia condition. This protease inhibitor showed a competitive inhibitor toward trypsin. In order to study the optimum inhibitory ability of this protease, we had measured its activity against trypsin under various pHs and in the presence of Mg2+. It was found that under weak basic condition, it showed better activity to inhibit trypsin. To further study the effect of the presence of Mg2+, various concentration of Mg2+ were added. It was found that at pH7.8 and with the presence of 0 M, 0.5 M, 1.0 M, 1.5 M, and 2.0 M of Mg2+, the respective Ki values were 4.84 x 10-10 M, 4.56 x 10-10 M, 4.39 x 10-10 M, 3.07 x 10-10 M, and 2.45 x 10-10 M, showing that the inhibitory activity in the presence of 2.0 M Mg2+ was about twofold of that without the presence of Mg2+. By contrast, same measurements for soybean protease inhibition activity, it was found that with the increase of the concentration of Mg2+ the inhibition activity decreased with the respective Ki values were 4.21 x 10-11 M, 6.24 x 10-11 M, 8.46 x 10-11 M, 9.34 x 10-11 M, and 1.18 x 10-10 M. It was found that the secondary structures were change with the presence of 2 M of Mg2+, whereas the tertiary structure was unchanged. The fluorescence study showed that the tryptophan fluorescence intensity increased indicating that there was a micro-environmental change around the tryptophan residues. ANS fluorescence also showed there was an increase for hydrophobic area in the presence of Mg2+. The MIANS fluorescence study showed that rice protease inhibitor resulted in the increase of intensity, however, with the presence of Mg2+, the intensity decreased.
1 .David L., Michael M.Cox, Lehninger Principles of Biochemistry ,Third Edition ,Worth publishers, USA, pp 273-277, 626-627 (2000)
2. Yili Li, Qichen Huang, Shiwei Zhang, Shenping Liu, Chengwu Chi, and Youqi Tang , Studies on an Artificial Trypsin Inhibitor Peptide Derived from the Mung Bean Trypsin Inhibitor: Chemical Synthesis, Refolding, and Crystallographic Analysis of Its complex with Trypsin , J. Biochem. , 116:18-25 (1994)
3. Gonzalo J. Domingo, Robin J. Leatherbarrow, Neil Freeman, Shila Patel, Malcolm Weir, “Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitors”, Int. J. Peptide protein Res. , 46:79-87 (1995)
4. Richard L. Mackman, Bradley A. Katz, J. Guy Breitenbucher, Hon C. Hui, Erik Verner, Christine Luong, Liang Liu, and Paul A., “Sprengeler, Exploiting Subsite S1 of Trypsin-Like Serine Proteases for Selectivity: Potent and Selective Inhibitors of Urokinase-Type Plasminogen Activator”, J. Med. Chem., 44:3856-3871 (2001)
5. Talal Gariani, Jeffrey D. McBride, Robin J. Leatherbarrow, “The role of the P2' position of Bowman-Birk proteinase inhibitor in the inhibition of trypsin Studies on P2' variation in cyclic peptides encompassing the reactive site loop”, Biochimica et Biophysica Acta , 1431:232-237(1999)
6. Hubert F. Gaertner and Antoine J. Puigserver,“Increased activity and stability of poly(ethylene glycol)-modified trypsin”, Enzyme Microb. Technol. 14:150-155(1992)
7. Misao Tashiro, kimikazu Hashino, Masako ShiozaKi, Fumio Ibuki, and Zensuke Maki, “The complete amino acid sequence of rice bran trypsin inhibitor”, J. Biochem., 102:297-306 (1987)
8. Wen-Chi Hou, Hsien-Jung Chen and Yaw-Huei Lin,“Dioscorins from different Dioscorea species all exhibit both carbonic anhydrase and trypsin inhibitor activities”, Bot. Bull. Acad. Sin. , 41:191-196 (2000)
9. Rosemarie W. Hammond, Donald E. Foard, and Brian A. Larkins, “Molecular Cloning and Analysis of a gene coding for the Bowman-Birk protease inhibitor in soybean”, The Journal of Biological Chemistry , 259(15):9883-9890 (1984)
10. Randeep Rakwal, Ganesh Kumar Agrawal, Nam-Soo Jwa, “Characterization of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors”, Gene, 263:189-198 (2001)
11. Yasuko Kato and Tsukasa Matsuda, “Glycation of Proteinous Inhibitors: Loss in Trypsin Inhibitory Activity by the Blocking of Arginine and Lysine Residues at Their Reactive Sites”, J. Agric. Food Chem., 45:3826-3831 (1997)
12. Shoji Odani, Takehiko Koide, and Teruo Ono, “Wheat germ trypsin inhibitors isolation and structural characterization of single-headed and double-headed inhibitor of the Bowman-Birk type”, J. Biochem. 100:975-983 (1986)
13. Koji Nakanishi; Berova, N.; Woody, R. W. Edited: Circular Dichroism Principles and Applications, VCH Publishers, Inc., p 473, (1994)
14. Hirst, J. D.; Colella, K.; Andrew, T. B.: Gilbert Electronic Circular Dichroism of Proteins from First-Principles Calculations, J. Phys. Chem. B, 107, pp 11813-11819, (2003)
15. Hennessey, J. P.; Jr.; Johnson, W. C.: Jr. Information Content in the Circular Dichroism of Proteins, Biochemistry, 20, pp 1085-1094, (1981)
16. Methods forProtein Analysis (1994) R. A. Copeland, Chapman and Hall, New York, p.194
17. 物理雙月刊24卷第3期 2001年6月
18. P. Ashjian, A. Elbarbary, P. Zuk, D. A. DeUgarte, P. Benhaim, M. H. Hedrick and L. Marcu, "Noninvasive in-situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy," Tissue Engineering, Vol. 10(3/4):411-420, 2004
19. 35.M. Mikola and A. Mikkonen, “Occurrence and Stabilities of Oat Trypsin and Chymotrypsin Inhibitors”, Journal of Cereal Science, 30: 227-235 (1999)
20. Adapted from Cornely, K., Crespo, E., Earley, M., Kloter, R., Levesque, A., andPickering, M. (1999), Kinetics of Papain, An Introductory Biochemistry Laboratory Experiment, J.Chem. Ed.,76, 5, 644-645.
21. John E. Mole and H. Robert Horton Kinetics of apain-Catalyzed Hydrolysis ofa-N-Benzoyl-L-arginine-p-ni troanilideBiochemistry, 12, No.5 (1973).
22. Lehninger Principles of Biochemistry
23. Hyun Kyu Song, Young Sil Kim, Jin Kuk Yang, Jinho Moon
and Jae Young Lee and Se Won Suh Crystal Structure of a 16 kDa Double-headed Bowman-Birk Trypsin Inhibitor from Barley Seeds at1.9 AÊ Resolution, J. Mol. Biol. (1999) 293, 1133-1144
24. M. Kotorm_an, a I. Laczk_o,b A. Szab_o,a and L.M. Simona, Effects of Ca2+ on catalytic activity and conformationof trypsin and a-chymotrypsin in aqueous ethanol. Biochemical and Biophysical Research Communications 304 (2003) 18–21
25. R.D. Kidd, H.P. Yennawar, P. Sears, C.-H. Wong, G.K. Farber,A weak calcium binding site in subtilisin BPN_ has a dramaticeffect on protein stability, J. Am. Chem. Soc. 118 (1996) 1645–1650
26. Jonathan D. Hirst, Karl Colella, and Andrew T. B. Gilbert, Electronic Circular Dichroism of Proteins from First-Principles Calculations. J. Phys. Chem. B 2003, 107, 11813-11819
27. Charles D. Andrew, Samita Bhattacharjee, Nicoleta Kokkoni, Jonathan D. Hirst, Gareth R. Jones, and Andrew J. Doig, Stabilizing Interactions between Aromatic and Basic SideChains in r-Helical Peptides and Proteins. Tyrosine Effects on Helix Circular Dichroism. J. AM. CHEM. SOC. 9 VOL. 124, NO. 43, 2002
28. Steven T. Olson, Richard Swanson,Duane Day, Ingrid Verhamme, Jan Kvassman,and Joseph D. Shore. Resolution of Michaelis Complex, Acylation, and Conformational Change Steps in the Reactions of the Serpin, Plasminogen Activator Inhibitor-1, with Tissue Plasminogen Activator and Trypsin. Biochemistry 2001, 40, 11742-11756
29. Joseph D.Shore, Duane E.Day, Ann Marie Francis-Chmura. A Fluorescent Probe Study of Plasminogen Activator Inhibitor-1. J. Biochem.Vol .270, No.10,pp.5395-5398,1995.
30. Yang, Y.; Shao, Z.; Chen, X.; Zhou, P.: Optical Spectroscopy To Investigate the Structure of Regenerated Bombyx mori Silk Fibroin in Solution, Biomacromolecules, 5, pp 773-779, (2004)
31. Judit Tulla-Puche, Irina V. Getun, Clare Woodward, and George Barany, Native-like Conformations Are Sampled by Partially Folded and DisorderedVariants of Bovine Pancreatic Trypsin Inhibitor. Biochemistry 2004, 43, 1591-1598
32. Yasuko Kato and Tsukasa Matsuda, “Glycation of Proteinous Inhibitors: Loss in Trypsin Inhibitory Activity by the Blocking of Arginine and Lysine Residues at Their Reactive Sites”, J. Agric. Food Chem., 45:3826-3831 (1997)
33. Gupte, S. S.; Lane, L. K.: Reaction of Purified (Na,K)-ATPase With The Fluorescent Sulfhydryl Probe 2-(4`-maleimidylanilino) naphthalene 6-sulfonic acid. Characterization and The Effects of Ligands, J.Bio.Chem. , 254, pp 10362-10369, (1979)
34. Agnes Dornyei , Melinda Kilyen , Tamas Kiss , Bela Gyurcsik , Ilona Laczko, Attila Pecsvaradi , L. Maria Simon , Marta Kotorman. The effects of Al(III) speciation on the activity of trypsin. Journal of Inorganic Biochemistry 97 (2003) 118–123
35. Liu, W.-H.; Feinstein, G.; Osuga, D. T.; Haynes, R.; Feeney, R. E. Modification of arginines in trypsin inhibitors by 1,2- cyclohexanedione. Biochemistry 1968, 7, 2886-289