簡易檢索 / 詳目顯示

研究生: 游奎軒
You, Kuei-shiuan
論文名稱: 添加銅纖維與碳化矽鬚晶對非石棉有機複合材磨潤性質的影響
Influence of Copper fiber and Silicon Carbide Whisker Content on Tribological properties of Nonasbestos Organic Friction Materials
指導教授: 李世欽
Lee, Shr-chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 127
中文關鍵詞: 煞車片銅纖維碳化矽鬚晶磨潤性質
外文關鍵詞: Silicon carbide, Copper fiber, Brake pad, Tribological property
相關次數: 點閱:167下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽車煞車片為了因應不同環境中的使用,常添加各種不同性質的材料製成非石棉有機(Non-Asbestos Organic)摩擦複合材,雖然許多的研究與文獻中都有提及各種材料添加後的磨潤性質,但都沒有在相同製程與相同比例下相互比較其磨潤性質,且一般汽車常使用的非石棉有機摩擦材料中,常常存有明顯的熱衰退問題。
    本研究將煞車片之配方中的各種材料與酚醛樹脂以相同的體積比例(1:1)製成摩擦材料,經過定溫、循環、定時三種摩擦測試比較其磨潤性質。使用光學顯微鏡觀察磨耗面變化,且透過硬度、抗折與表面粗度等分析討論其磨潤性質,在此煞車片配方中添加相同比例的銅纖維與黃銅碎片的試片(CFB11)時摩擦係數變動最穩定,再添加不同比例的碳化矽鬚晶(3:6:9)於試片中,隨著碳化矽比例的增加,高溫熱衰退隨之減少,其中9%之SiC鬚晶添加於試片中可改善熱衰退性質且其摩擦係數與磨耗率趨於穩定。

    The brake pads are used in automotive vehicles in different circum-
    stances. Different fillers are often supplemented to the non-asbestos orga- nic friction materials to improve their tribological properties. Although the tribological properties of some materials were reported in the litera- tures, non of them were concerning the properties affected versus volume fraction of the ingredient of the material compositions in the same process. Furthermore, thermal decomposition or liquescence of phenolic resin due to frictional heating can deteriorate this type of materials.
    The purpose of this study is to examine the tribological behavior of NAO friction materials containing same volume ratios of ingredients and phenolic resin. Three kinds of friction test have been applied to evaluate the tribological properties and the mechanical properties compared with were the Rockwell hardness、flexural strength and roughness(Ra) of the specimens .The surface morphologies of the specimens observed to study the wear properties by use of optical microscope and scanning electronic microscope before and after friction test. In the brake pad formulation, the specimen (CFB11) which was composed of copper fiber and brass chips in the same volume fraction performed the better friction coefficient and the deterioration phenomenon of the specimens were almost elimina- tion with higher content of silicon carbide whisker. The tribological behavior of the specimen composed of 9 % silicon carbide whisker has been stabilized at higher temperature.

    目錄 中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 目錄.....................................................Ⅲ 圖目錄...................................................Ⅶ 表目錄.................................................XII 第一章、前言..............................................1 第二章、文獻回顧..........................................3 2-1煞車摩擦材料的演進..............................3 2-2 煞車材料種類...................................4 2-2-1 碳基摩擦材料..............................4 2-2-2 金屬基摩擦材料............................4 2-2-3 半金屬有機摩擦材料........................5 2-2-4 石棉有機摩擦材料..........................5 2-2-5 非石棉有機摩擦材料........................6 2-3 磨潤簡介.......................................6 2-3-1 磨潤介紹..................................6 2-3-2 摩擦原理..................................7 2-3-3 磨耗機制..................................9 2-3-4 潤滑型態.................................11 2-4 摩擦材料的特性................................17 2-4-1 摩擦材料的要求...........................17 2-4-2 摩擦材料需具有的基本條件.................17 2-4-3 影響摩擦特性的因素.......................19 2-5 常用摩擦材料成分..............................21 2-5-1 強化材...................................21 2-5-2 結合材...................................26 2-5-3固體潤滑劑................................28 2-5-4摩擦調整劑及其他..........................28 2-6 摩擦材料的應用................................29 第三章、實驗方法.........................................34 3-1實驗流程.......................................34 3-2 試片製作......................................34 3-2-1 實驗原料.................................34 3-2-2 原料混合.................................36 3-2-3 熱壓成形.................................37 3-2-4 硬化處理.................................37 3-3 實驗..........................................41 3-3-1 磨耗測試.................................41 3-3-2 磨耗測試之條件...........................41 3-3-3 磨耗損失的測量...........................42 3-3-4 硬度測試(Hardness test).....................43 3-3-5 抗折強度測試(Flexural strength test)..........44 3-3-6 磨耗表面之觀察...........................45 3-3-7 表面粗糙度測量...........................46 3-3-8 摩擦測試片之組成.........................46 第四章、結果與討論.......................................55 4-1 單一成分之定溫摩擦測試........................55 4-1-1 強化材...................................55 4-1-2 填充材...................................60 4-2 單一成分之循環摩擦測試........................75 4-3 單一成分之定時摩擦測試........................83 4-4 單一摩擦材料之機械性質........................89 4-5 複合材料之定溫摩擦測試........................99 4-6 複合材料之循環摩擦測試.......................106 4-7 複合材料之定時摩擦測試.......................111 4-8 複合摩擦材料之機械性質.......................114 第五章、結論............................................118 參考文獻................................................120 圖目錄 Fig.2-3-1 The mode of friction (a) Rolling friction (b) Sliding friction…..14 Fig.2-3-2 The relation of wear mechanism……………………………..14 Fig.2-3-3 Four kinds of wear mechanism……………………………….15 Fig.2-3-4 Mechanism of adhesive wear…...............................................15 Fig.2-3-5 Two-body and three body abrasion...........................................16 Fig.2-3-6 Stribeck curve...........................................................................16 Fig.2-6-1 Friction material for brakes and clutches.................................31 Fig.2-6-2.Schematic diagram of drum brake............................................32 Fig.2-6-3 Brake lining..............................................................................32 Fig.2-6-4 Schematic diagram of disc brake..............................................33 Fig.2-6-5 Brake pad..................................................................................33 Fig.3-1-1 Experimental procedure............................................................38 Fig.3-2-1 Weight loss curve from therogravimetric analysis at 10℃/min of heating rate up to 233℃........................................................39 Fig.3-2-2 High speed mixer for ingredient to uniform powder…............39 Fig.3-2-3 Heater and forming mold..........................................................40 Fig.3-2-4 The specimens heat treat by the drier for 8 hours at 180℃......40 Fig.3-3-1 Schematic diagram of constant speed friction test machine.....49 Fig.3-3-2 Apparel of fixed speed friction test machine............................50 Fig.3-3-3 Schematic diagram of test rig...................................................50 Fig.3-3-4 Rockwell hardness tester (HRS)...............................................51 Fig.3-3-5 Schematic diagram of steel ball of indenter..............................51 Fig.3-3-6 (a) flexural stress distribution and (b)schematic diagram of flexural strength test.................................................................52 Fig.4-1-1 Friction coefficients variation of Cu fiber in different temperatures………………….……………………………….63 Fig.4-1-2 Copper fiber deformation inspected by optical micrographs before and after friction test……….……………………….....63 Fig.4-1-3 Friction coefficients variation of Cu powder in different temperatures ………………………….…………...………….64 Fig.4-1-4 Surface morphologies at 200℃ and 300℃ abrasion after friction test ………………………………..………………….64 Fig.4-1-5 Friction coefficients variation of brass chips in different temperatures………………………………….……………… 65 Fig.4-1-6 Surface morphologies of brass chips at 200℃ and 300℃ abrasion after friction test…………………………………… 65 Fig.4-1-7 SEM observation of the surface morphologies after friction test ……………………………………………………………66 Fig.4-1-8 The EDS of brass chips after friction test.................................66 Fig.4-1-9 Friction coefficients variation of CMC fiber in different temperatures………………………………………….……… 67 Fig. 4-1-10 Surface morphologies of CMC specimens inspected by OM and SEM after friction test………………..……………67 Fig.4-1-11 Friction coefficients variation of SiC whisker in different temperatures…………...…………………………………….68 Fig.4-1-12 Surface morphologies of SiC whisker at 200℃and 300℃ abrasion after friction test.......................................................68 Fig.4-1-13 CMC fiber and SiC whisker profile…………………………69 Fig.4-1-14 Friction coefficients variation of carbon fiber in different temperatures............................................................................70 Fig.4-1-15 Surface morphologies of carbon fiber inspected by OM and SEM before and after friction test..........................................70 Fig.4-1-16 Friction coefficients variation of the specimens H in different temperatures.............................................................71 Fig. 4-1-17 Surface morphologies of the specimens H at 200℃ and 300℃ abrasion after friction test…………………….............71 Fig.4-1-18 Friction coefficients variation of specimens BA in different temperatures............................................................................72 Fig.4-1-19 Surface morphologies of the specimens BA at 200℃ and 300℃ abrasion after friction test.............................................72 Fig.4-1-20 Friction coefficients variation of Mu powder in different temperatures............................................................................73 Fig.4-1-21 Surface morphologies of specimens Mu at 200℃and 300℃ abrasion after friction test.......................................................73 Fig.4-1-22 Friction coefficients variation of specimens G in different temperatures............................................................................74 Fig.4-1-23 Surface morphologies of specimens G at 200℃ and 300℃ abrasion after friction test……………..…..………………...74 Fig.4-2-1 Friction coefficient and temperature variations during cyclic test with different mental reinforcement additions...................78 Fig.4-2-2 Friction coefficient and temperature variations during cyclic test with different non-metal reinforcement additions.............79 Fig.4-2-3 Friction coefficient and temperature variations during cyclic test with different filler additions..............................................80 Fig.4-2-4 Recovery behavior of friction materials...................................82 Fig.4-2-5 Wear rate after cyclic test.........................................................82 Fig.4-3-1 Friction coefficient and temperature variations v.s. different metal reinforcement additions during friction test...................85 Fig.4-3-2 Friction coefficient and temperature variations v.s. different non-metal reinforcement additions during friction test............86 Fig.4-3-3 Friction coefficient and temperature variations v.s. different filler additions during friction test............................................87 Fig.4-4-1 Rockwell hardness (HRS) of different materials......................93 Fig.4-4-2 Flexural strength test of different materials..............................93 Fig.4-4-3 Morphologies of cross-section of flexural strength test of different metals……………………………….………………94 Fig.4-4-4 Morphologies of cross-section of flexural strength test of non-metals................................................................................95 Fig.4-4-5 Morphologies of SEM of cross-section of fillers after flexural strength test………………………….……………………......96 Fig.4-4-6 The EDS of sintering bulk of Cu powder specimen.................97 Fig.4-4-7 The EDS of fiber in Mu specimen............................................97 Fig.4-4-8 The roughness (Ra) of different materials before and after friction test in 200℃ and 300℃................................................98 Fig.4-5-1 The friction coefficients variation v.s. different temperatures test of Cu fiber+brass………………………………….…….102 Fig.4-5-2 The wear rate of different CuF+Brass compound addition v.s. different temperatures during friction test..............................102 Fig.4-5-3 Surface morphologies of Cu F+Brass specimens inspected by OM before and after friction test............................................103 Fig.4-5-4 Friction coefficients variation v.s. different temperatures during friction test of different SiC whisker addition.............104 Fig.4-5-5 The wear rate v.s. different temperatures during friction test of different SiC whisker compound addition..............................104 Fig.4-5-6 Surface morphologies of SiC specimens inspected by OM before and after friction test....................................................105 Fig.4-6-1 Friction coefficient and temperature variations during cyclic test with different CuF+Brass reinforced friction composites …………...…………………………………………….........108 Fig.4-6-2 Friction coefficient and temperature variations during cyclic test with SiC whisker reinforced friction composites.............109 Fig.4-6-3 The tribological behavior of frictional composites................110 Fig.4-7-1 Friction coefficient and temperature variations v.s. different Cu F+Brass ratio additions during friction test.......................112 Fig.4-7-2 Friction coefficient and temperature variations v.s. different SiC whisker ratio additions during friction test......................113 Fig.4-8-1 The hardness (HRS) of friction composites............................116 Fig.4-8-2 The flexural strength of friction composites...........................116 Fig.4-8-3 The roughness (Ra) of friction composites.............................117 表目錄 Table 2-1 The wear cost in U.S.A., 1986....................................................7 Table 3-1 Composition of Brass chips......................................................35 Table 3-2 Composition of CMC fiber.......................................................35 Table 3-3 CNS-2586 criterion..................................................................48 Table 3-4 Mechanical properties of gray iron disc...................................48 Table 3-5 The composition of the friction specimens .............................53 Table 3-6 The composition of the friction composites.............................54

    參考文獻
    [1] Jacko M.G.,Ducharme R.T. and Somers J.H.,Brake and clutch emissions generated during vehicle operation,SAE Transactions, 1973,vol.82,pp.1813-1831.
    [2] 行政院勞工委員會勞工安全衛生研究所,煞車來令業務勞工石棉暴露防治研究,1996,勞工衛生組,台北。
    [3] Coultas D.B. and Samet J.M.,Occupational lung cancer, Clinics in Chest Medicine,vol.13,no.2,pp.351-354,1992.
    [4] R.T.Spurr,Fillers in friction materials,Wear 22, pp. 367-371,1972.
    [5] 中華民國摩擦材料協會,摩擦材料文集,12,1994。
    [6] Blau P.J.,Friction science and technology,Chapter 1,Chapter 3, Chapter 7 Marcel Dekker,New York, ,1996.
    [7] Rabinowicz E.,The tribology of magnetic recording system–an overview in Tribology and mechanics of magnetic storage systems,vol.Ⅲ,ASME,New York,1986.
    [8] Hutchings I.M.,Tribology:Friction and wear of engineering materials, Chapter 1,Chapter 3, CRC,Boca Raton,1992.
    [9] Singer I.L.,Pollock H.M.,Fundamentals of Friction: Macroscopic and Microscopic Processes.,NATO ASI Series E:Applied sciences- Vol.220,1991.
    [10] K.H. Zum Gahr,Microstructure and wear of materials, chapter 4, Tribology series 10,1987.
    [11] A.J.Kinloch,The science of adhesion, J.Mater.Sci, 15,pp.2141-2166, 1980.
    [12] B.U.Derjaguin,Invenstigation on the adhesion of polymer particles to the surface of semiconductors, J.Adhesion, pp.65-71,1972.
    [13] H.Krup,Recent results in particle adhesion,UHV measurements,light modulated adhesion and the effect of adsorbates, J.Adhesion , pp.83-86, 1972.
    [14] Riesz CH.Friction,lubrication and wear mechanisms.In Schey JA editor.Metal deformation process,chapter 3,New York:Marcel dekker Inc,pp.84-136,1970.
    [15] Bauer H.:Automotive brake systems,Robert Bosch,Stuttgart, pp.4-8,1995.
    [16] 林群新,行車安全的秘密武器-制動系統材料,工業材料,88期,pp.89-95,1994。
    [17] Filip P.,Wright M.A and Marx D.T.:On-highway brake characteri- zation and performance evaluation,Materially Speaking,vol.11, no.11,pp.2-7,1997.
    [18] Hayashi N.,Matsui A.,Takahashi S.,Effect of surface topography on transferred film formation in plastic and metal sliding system,Wear 225-229,pp.329-338,1999.
    [19] Kuhlmann-Wilsdorf D.,What role for contact spot and dislocations in friction and wear ?,Wear 200,pp.8-29, 1996.
    [20] Shoroworidi K.M.,Hasseeb A.S.M.A.,Celis J.P.,Velocity effects on the wear, friction and tribochemicstry of aluminum MMC sliding against phenolic brake pad,Wear 256,pp.1176-1181,2004.
    [21] Shoroworidi K.M.,Hasseeb A.S.M.A.,Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures,Wear 261,pp.634-641,2006.
    [22] Aderson A.E.,Wear of brake materials.,Chapter 5,In Peterson MB, Winer WO,editors.Wear control Handbook,New York,ASM, pp.843-857,1980.
    [23] Nakagawa M.,Fumuaki N.,Friction material using iron powder.US Patent 4672082,1987.
    [24] Jacko M.G.,Rhee S.K.,Brake linings and clutch facings. In Grayson M.,editor.Encyclopedia of composite materials and components, Wiley,pp.144-154,1983.
    [25] Jia X.,Zhou B.,Chen Y.,Jiang M.,ling X.,Study on worn surface layers of the friction materials and grey cast iron.Tribol 15(2), pp.171-176,1995.
    [26] Kim S.J.,Cho M.H.,Lim D.S.,Jang H.,Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material.Wear 251,pp.1484-1491, 2001.
    [27] 大谷杉郎,大谷朝男,碳纖維材料入門,賴耿陽譯,復漢出版社,2000。
    [28] Vishwanath B.,Verma A.P.,Kameswara Rao C.V.S.,Effect of rein- forcement on friction and wear of fabric reinforced polymeric composites.Wear 167,93-99,1993.
    [29] Gopal P.,Dharani L.R.,Blum F.D.,Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material.Wear 174, pp.119-127,1994.
    [30] Sasahaha S.,Watanabe T.,Non-asbestos friction material. US Patent 6284815,2001.
    [37] 馬振基,高分子複合材料上,國立編譯館,台北市,民國77年。
    [32] Kim S.J.,Cho M.H.,Cho K.H.,Jang H.,Complementary effect of solid lubricants in the automotive brake lining, Tribology Inter- national 40,pp.15-20,2007.
    [33] Cho M.H.,Ju J.,Kim S.J.,Jang H.,Tribological propertirs of solid lubricants(graphite, Sb2S3及MoS2) for automotive brake friction materials,Wear 260,pp.855-860,2006.
    [34] Yi G.,Yan F.,Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262,121-129,2007.
    [35] Hays Jr.W.D.,Friction material.US Patent 4748193,1988.
    [36] Nan Hoang Traffic Instrument Co., Ltd
    [37] http://www.bccarnet.com/Big5/glossary.asp?termID=16
    [38] CNS2586,D2002,Brake linings for automobiles.
    [39] CNS2472,G3038,Grey iron casting.
    [40] CNS13953,D3198,Method of test for hydraulic brake system.
    [41] CNS10422,B6081,Rockwell and Rockwell superficial hardness test machines.
    [42] ASTM D790M, ASTM Standards and literature references for composite materials,ASTM,1987.
    [43] 詹添印,廖德潭,周漢標,機械材料試驗,第二章與第六章,全華科技圖書股份有限公司,民國83年。
    [44] 汪建民,材料分析,第六章,中國材料科學學會,民國87年。
    [45] 陳世春,劉守一,塑膠材料潤滑性質,復漢出版社,1988。
    [46] Moore D.F.,磨潤學原理與應用,第三章,楊春欽 譯,科技圖書股份有限公司,1986。
    [47] Ho S.C.,Chern Lin J.H.,Ju C.P.,Effect of phenolic content on tribological behavior of carbonized copper-phenolic based friction material.,wear 258,pp.1764-1774,2005.
    [48] Gwidon W.S.,Wear-materials,mechanicsms and practice., chapter 7,Wiley,2005.
    [49] Anderson A.E.,Friction and wear of automotive brakes.,In Henry S.D.,editor.ASM Handbook,vol.18,Metal Park,OH 44073,ASM International,pp.569-577,1992.
    [50] Ho S.C.,Chern Lin J.H.,Ju C.P.,Effect of addition on mechanical and tribological properties of a copper/ phenolic-based friction material,wear 258,pp.861-869, 2005.
    [51] Ryohei I.,Hozumi T.,Hiroshi U.,Shiro K.,Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid.,Polymer 43,pp.3475-3481,2002.
    [52] sterle W,Griepentrog M,Gross Th,Urban I.Chemical and microstructural changes induced by friction and wear of brakes,Wear 251,pp.1469-1476,2001.
    [53] Bijwe J.,Nidhi,Majumdar N.,Satapathy B.K.,Influence of modified phenolic resins on the fade and recovery behavior of friction materials,Wear 259,pp.1068-1078,2005.
    [54] Chang W.C.,Ma C.C.M.,Tai N.H.,Chen C.B.,Effects of processing methods and parameters on the mechanical properties and microstructure.,J Mater Sci 29, pp.5859-5867,1994.
    [55] Kato K.,Wear in relation to friction – a review.,Wear 241, pp.151- 157 ,2000.
    [56] Willian F.S.,Ronald G.,Matthew T.,Charles W.,Structure and pro- perties of engineering alloys,2nd Edition, McGraw-HillSeries in materials science and engineering, 1993.
    [57] Xie Y.S.,Bhushan B.,Effect of particle size,polishing pad and contact pressure in free abrasive polishing.Wear 200,pp.281- 295,1996.
    [58] Aleinikov F.K.,The effect of certain physical and mechanical properties on the grinding of brittle materials.,Sov.Phys.Tech. Phys.2,pp.2529-2538,1957.

    下載圖示 校內:2009-07-29公開
    校外:2009-07-29公開
    QR CODE