簡易檢索 / 詳目顯示

研究生: 黃律瑋
Huang, Lu-Wei
論文名稱: 具特殊濕潤性紡織品分離膜在分層油-水混合物連續分離的應用
Continuous Separation of Stratified Oil-Water Mixtures by Using Fabric Membranes with Special Wettability
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 連續油-水分離過程疏水/親油膜親水/水下疏油膜分離膜的阻力分離器的設計理論模型建立與驗證分離器的放大
外文關鍵詞: Continuous oil-water separation process, Hydrophobic/oleophilic membrane, Hydrophilic/under-water oleophobic membrane, Membrane resistance, Separator design, Modeling and validation, Separator scaleup
相關次數: 點閱:86下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,提出了一個使用兩種具有特殊潤濕性分離膜的新穎連續分離分層油-水混合物的程序。透過在聚酯織維紡織品上塗佈高分子奈米顆粒來製備出疏水/親油膜,以及水潤濕的棉紡織品來當作親水/水下疏油膜。接著使用作者先前建立的方法,分別測定油通過疏水/親油膜和水通過親水/水下疏油膜的流動阻力。然後製造如圖1(a)所示的小型串聯分離膜分離器,並在一定流速範圍內實驗量測甲苯和水混合物的連續分離速率。此外,也開發了一個簡單的重力驅動液體流動模型,預測的油、水流率理論值和實驗值的誤差都在 ±4% 以內,此一結果證實了理論模型的正確性。除了串聯分離裝置和低密度的油外,還設計了其他三種不同構造的分離器,如圖 1(b)、1(c)、1(d) 所示,並通過模型進行分析,結果顯示,每種分離器構造都表現出獨特的分離性能。對於特定的連續分離分層油-水混合物,這些預測有利於我們選擇分離器。此外,透過考慮水的入侵壓力和油的入侵壓力,根據文獻中可用的數據,將圖1(a)所示的分離器規模放大,探討實際應用的可行性。

    In this study, a novel continuous separation process for stratified oil-water mixtures using two membranes with special wettability was proposed. The hydrophobic/oleophilic membrane was prepared by coating polymeric nanoparticles on polyester fabric. In contrast, water-wetted pristine cotton fabric was used as the hydrophilic/under-water oleophobic membrane. The values of membrane resistance, RM, to the Poiseuille flow of oil through the hydrophobic/oleophilic membrane and water through the hydrophilic/under-water oleophobic membrane were determined by using the methodology, which was established previously by the authors. A small separator with tandem membranes as shown in Fig. 1(a) was then fabricated and used to continuously separate toluene and water mixtures in a range of flow rates. A simple gravity-driven liquid flow model, resulting in the theoretical flow rates within ±4% error for the experimental conditions, was also developed. Such agreement confirmed the model competence for accurate prediction of the separation flow rates. In addition to the separator with tandem membranes and oil of lower density, three other separators with different configurations as shown in Fig. 1(b), 1(c), and 1(d) were also designed and analyzed by the developed models. It was shown that unique separation performance is exhibited by each separator configuration. This is beneficial to the choice of separator for continuous separation of a specific stratified oil/water mixtures. Furthermore, the separator as shown in Fig. 1(a) was scaled up by taking the water intrusion pressure (WIP) and oil intrusion pressure (OIP) into considerations for practical applications. Technical feasibility of large-scale separators was examined based on the data available in the literature.

    目錄 I Extended Abstract II 誌謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 符號 XX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目標 2 第二章 文獻回顧 3 2.1 傳統油水分離方法 3 2.1.1 傳統油水分離方法-化學方法 4 2.1.2 傳統油水分離方法-物理方法 5 2.1.3 傳統油水分離方法-機械方法 6 2.1.4 傳統油水分離方法-生物方法 7 2.1.5 傳統油水分離方法-定點燃燒法 8 2.1.6 傳統油水分離方法-缺陷及未來發展 9 2.2 特殊潤濕性質 10 2.2.1 蓮花效應 11 2.2.2 特殊濕潤性質表面之特徵 14 2.2.3 楊式方程式 16 2.2.4 溫佐(Wenzel)方程式 17 2.2.5 卡西-巴斯特(Cassie and Baxter)方程式 18 2.2.6 介於溫佐及卡西-巴斯特之過度狀態 19 2.2.7 入侵壓力(Intrusion pressure, IP) 20 2.3 特殊濕潤性質之轉換 22 2.3.1 特殊濕潤性質之轉換---改變溫度 22 2.3.2 特殊濕潤性質之轉換---改變 pH 24 2.3.3 特殊濕潤性質之轉換---透過潤濕 26 2.4 新穎油水分離方法 29 2.4.1 批次油水分離 29 2.4.2 連續油水分離 31 2.5 分離流率評估 34 2.5.1 利用「實驗」求得流率 34 2.5.2 利用「理論模型」評估流率 35 第三章 模型建立 43 3.1 膜阻力(Membrane resistance, RM)模型建立 43 3.2 串聯(tandem)分離膜模型建立 47 3.3 並聯(parallel)分離膜模型建立 51 第四章 實驗內容 53 4.1 實驗材料 53 4.2 儀器設備與裝置54 4.2.1 Milli-Q 超純水系統 54 4.2.2 箱型高溫爐 (Muffle furnace) 55 4.2.3 掃描式電子顯微鏡 (Scanning electron microscope) 55 4.2.4 接觸角分析儀 (Contact angle measure analyzer) 57 4.2.5 分離膜阻力(RM)測定裝置 58 4.2.6 串聯連續分離裝置 (Tandem device) 59 4.2.7 蠕動馬達 60 4.3 實驗方法 61 4.3.1 紡織品基材前處理 61 4.3.2 鐵氟龍分散液製備 61 4.3.3 利用浸鍍法來製備疏水/親油之紡織品分離膜 61 4.3.4 利用潤濕法來製備親水/疏油之紡織品分離膜 62 4.3.5 利用潤濕取代法來製備親水/疏油之紡織品分離膜 62 4.3.6 接觸角量測 63 4.3.7 入侵壓力量測 63 4.3.8 分離膜阻力(RM)測定 64 4.3.9 連續分離裝置之油流率評估 (Oil test) 65 4.3.10 連續分離裝置之水流率評估 (Water test) 65 4.3.11 連續分層油水混合物分離 66 第五章 結果與討論 67 5.1 分離膜的性質及特殊濕潤性質之轉換 68 5.1.1 分離膜性質之 SEM 及接觸角結果 68 5.1.2 特殊濕潤性質之轉換 71 5.1.3 分離膜性質之入侵壓力及膜阻力結果 73 5.2 模型的驗證及預測結果 87 5.2.1 串聯分離裝置之油流率評估 (Oil test) 87 5.2.2 串聯分離裝置之水流率評估 (Water test) 89 5.2.3 串聯分離裝置之分離分層甲苯-水混合物 90 5.2.4 評估串聯、並聯分離裝置的分離結果 95 5.3 大規模流速下分離器的設計方法 99 第六章 結論與建議 104 6.1 結論 104 6.2 建議 107 參考文獻 108

    1. Riazi, M. R., Oil spill occurrence, smulation, and behavior. Routledge, 2021.
    2. Vanem, E., Q. Endresen, and R. Skjong, Cost-effectiveness criteria for marine oil spill preventive measures. Reliability Engineering & System Safety, 93(9): p. 1354-1368, 2008.
    3. Palchoudhury S. and J. R. Lead, A facile and cost-effective method for separation of oil-water mixtures using polymer-coated iron oxide nanoparticles. Environmental Science Technology, 48(24): p. 14558-14563, 2014.
    4. Mcnutt, M. K., R. Camilli, T. J. Crone, G. D. Guthrie, P. A. Hsieh, T. B. Ryerson, O.
    Savas, and F. Shaffer, Review of flow rate estimates of the deepwater horizon oil spill. Proceedings of the National Academy of Sciences, 109(50): p. 20260-20267, 2012.
    5. Wan, Y., B. Wang, J. S. Khim, S. Hong, W. J. Shim, and J. Hu, Naphthenic acids in
    coastal sediments after the hebei spirit oil spill: a potential indicator for oil
    contamination. Environmental Science Technology, 48(7): p. 4153-4162, 2014.
    6. Michel, J., Oil spills : causes, consequences, prevention, and countermeasures, World Scientific, 2016.
    7. Majed A. A., A. R. Adebayo, and M. E. Hossain, A sustainable approach to controlling oil spills. Journal of Environmental Management, 113: p. 213-227, 2012.
    8. Dhaka, A. and P. Chattopadhyay, A review on physical remediation techniques for
    treatment of marine oil spills. Journal of Environmental Management, 288: p.
    112428-112433, 2021.
    9. Lessard R. R. and G. Demarco, The significance of oil spill dispersants. Spill Science & Technology Bulletin, 6: p. 59-63, 2000.
    10. Lewis, A., B. K. Trudel, R. C. Belore, and J. V. Mullin, Large-scale dispersant
    leaching and effectiveness experiments with oils on calm water. Marine Pollution
    Bulletin, 60(2): p. 244-254, 2010.
    11. Kujawinski, E. B., M. C. K. Soule, D. L. Valentine, K. Longnecker, and M. C.
    Redmond. fate of dispersants associated with the deepwater horizon oil spill.
    Environmental Science Technology, 45(4): p. 1298-306, 2011.
    12. Adebajo, M. O., R. L. Frost, J. T. Kloprogge, and O. Carmody. porous materials for
    oil spill cleanup: a review of synthesis and absorbing properties. Journal of Porous
    Materials, 10(3): p. 159-170, 2003.
    13. Radetic M. M., D. M. Jocic, P. M. Jovancic, Z. L. Petrovic, and H. F. Thomas,
    Recycled wool-based nonwoven material as an oil sorbent. Environmental Science
    Technology, 37: p. 1008-1014, 2003.
    14. Bayat, B. A., S. F. Aghamiri, A. Moheb, and G. R. V. Nezhaad, Oil spill cleanup from sea water by sorbent materials. Chemical Engineering Technology, 28(12): p.
    1525-1528, 2005.
    15. Zhu, Q., Q. Pan, and F. Liu, Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. The Journal of Physical Chemistry, 115(35): p. 17464-17470, 2011.
    16. Karatum, O., S. A. Steiner, J. S. Griffin, and D. L. Plata, Flexible mechanically
    durable aerogel composites for oil capture and recovery. ACS Applied Material
    Interfaces, 8(1): p. 215-224, 2016.
    17. Broje V. and A. A. Keller, Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environmental Science Technology, 40: p. 7914-7925, 2006.
    18. Naby A. A. and A. H. Hammoud, Oily wastewater separator enhancement using
    hybrid system drum skimmer integrated with air injection & surface air stream.
    International Journal of Mechanical and Production Engineering, 6: p. 2320-2331,
    2018.
    19. Boopathy, R., S. Shields, and S. Nunna, Biodegradation of crude oil from the bp oil spill in the marsh sediments of southeast louisiana, Apply Biochemistry Biotechnology, 167(6): p. 1560-1568, 2012.
    20. Ron, E. Z. and E. Rosenberg, Enhanced bioremediation of oil spills in the sea. Current Opinion Biotechnology, 27: p. 191-194, 2014.
    21. Mullin, J. V. and M. A. Champ, Introduction/overview to in situ burning of oil spills. Spill Science & Technology Bulletin, 8(4): p. 323-330, 2003.
    22. Gullett, J. A. and B. K. Gullett, Aerostat sampling of PCDD/PCDF emissions from the gulf oil spill in situ burns. Environmental Science Technology, 44: p. 9431-9438,
    2010.
    23. Rasmussen, F. J. and P. J. Brandvik, Measuring ignitability for in situ burning of oil spills weathered under arctic conditions: from laboratory studies to large-scale field experiments. Marine Pollution Bulletin, 62(8): p. 1780-2785, 2011.
    24. Kwon, G., E. Post, and A. Tuteja, Membranes with selective wettability for the
    separation of oil-water mixtures. MRS Communications, 5(3): p. 475-494, 2015.
    25. Gupta, R. K., G. J. Dunderdale, M. W. England, and A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 5(31): p. 16025-16058, 2017.
    26. Barthlott W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202: p. 1-2, 1997.
    27. Neinhuis, C. and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79: p. 667-672, 1997.
    28. Zimmermann, J., S. Seeger, and F. A. Reifler, Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces. Textile Research Journal, 79(17): p. 1565-1570, 2009.
    29. Chu, Z. and S. Seeger, Superamphiphobic surfaces. Chemical Society Reviews, 43(8): p. 2784-2798, 2014.
    30. Li, S., J. Huang, Z. Chen, G. Chen, and Y. Lai, A review on special wettability
    textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry a, 5(1): p. 31-55, 2017.
    31. Wenzel, R., Resistance of solid surfaces to wetting by water. Industrial and
    Engineering Chemistry, 28: p. 988-992, 1936.
    32. Cassie, A. B. D. and S. Baxter, Wettability of porous surfaces. Physics and Chemistry of Surfaces, 3: p. 186-194, 1944.
    33. Feng, X. and L. Jiang, Design and creation of superwetting/antiwetting surfaces.
    Advanced Materials, 18(23): p. 3063-3078, 2006.
    34. Liu, X., Y. Liang, F. Zhou, and W. Liu, Extreme wettability and tunable adhesion:
    biomimicking beyond nature, Soft Matter, 8(7): p. 2070-2086, 2012.
    35. Bormashenko, E., R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko,
    Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270: p. 98-103, 2013.
    36. Bico J., U. Thiele, and D. Quere, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206: p. 41-46, 2002.
    37. Tuteja, A., W. Choi, S. A. Mazzella, G.C. Rutledge, and R. E. Cohen, Designing
    superoleophobic surfaces. Science, 318(5856): p. 1618-1622, 2007.
    38. Washburn, E. W., Note on a method of determining the distribution of pore sizes in a porous material. Physics, 7: p. 115-116, 1921.
    39. Song, J. S. Huang, X. Bu, J. E. Mtes, I. P. Parkin, and C. M. Megaridis, Self-driven
    one-step oil removal from oil spill on water via selective-wettability steel mesh. ACS Applied Materials Interfaces, 6(22): p. 19858-19865, 2014.
    40. Oh, S., S. Ki, C. Lee, and Y. Nam, Performance analysis of gravity-driven oil-water
    separation using membranes with special wettability. Langmuir, 35(24): p. 7769-7782, 2019.
    41. Ou, R., J. Wei, L. Jiang, and H. Wang, Robust thermoresponsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation. Environmental Science Technology, 50(2): p. 906-914, 2016.
    42. Chen, X., Y. He, Q. Yang, X. Yang, and G. Zeng, Facile preparation of a smart
    membrane with ammonia-responsive wettability transition for controllable oil/water separation. Journal of Materials Science, 53(1): p. 516-527, 2017.
    43. Lei, Z., G. Zhang, Y. Deng, and C. Wang, Thermoresponsive melamine sponges with switchable wettability by interface-initiated atom transfer radical polymerization for oil/water separation. ACS Applied Material Interfaces, 9(10): p. 8967-8974, 2017.
    44. Ngo, C. V. and D. M. Chun, Fast wettability transition from hydrophilic to
    superhydrophobic laser-textured stainless steel surfaces under low-temperature
    annealing. Applied Surface Science, 409: p. 232-240, 2017.
    45. Zhang, W., N. Liu, Y. Liu, X. Li, and L. Jiang, Thermo-driven controllable emulsion
    separation by a polymer-decorated membrane with switchable wettability.
    Angewandte Chemie International Edition, 57(20): p. 5740-5745, 2018.
    46. Li, X., Y. Jiang, Z. Jiang, C. Wen, and J. Lian, Reversible wettability transition
    between superhydrophilicity and superhydrophobicity through alternate
    heating-reheating cycle on laser-ablated brass surface. Applied Surface Science, 492: p. 349-361, 2019.
    47. Zhang, L., T. Wang, S. Kim, S. Tan, and Y. Jiang, Boiling enhancement on surfaces
    with smart wettability transition. Applied Physics Letters, 115(10): p. 103701-103706, 2019.
    48. Zhang, L., Z. Zhang, and P. Wang, Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Materials, 4(2): p. 8-14, 2012.
    49. Xu, Z., Y. Zhao, X. Wang, and T. Lin, Fluorine-free superhydrophobic coatings with ph-induced wettability transition for controllable oil-water separation. ACS Applied Material Interfaces, 8(8): p. 5661-5667, 2016.
    50. Fu, Y., B. Jin, Q. Zhang, X. Zhang, and F. Chen, Ph-induced switchable
    superwettability of efficient antibacterial fabrics for durable selective oil/water
    separation. ACS Applied Material Interfaces, 9(35): p. 30161-30170, 2017.
    51. Bai, X., Z. Zhao, H. Yang, and J. Li, ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures. Separation and Purification Technology, 221: p. 294-302, 2019.
    52. Ren, J., F. Tao, X. Wang, and Y. Cui, A novel TiO2@stearic acid/chitosan coating
    with reversible wettability for controllable oil/water and emulsions separation.
    Carbohydrate Polymers, 232: p. 115807-115813, 2020.
    53. Palamà, I. E., Underwater wenzel and cassie oleophobic behaviour. Journal of
    Materials Chemistry A, 3(7): p. 3854-3861, 2015.
    54. Wang, L., Y. Zhao, Y. Tian, and L. Jiang, A general strategy for the separation of
    immiscible organic liquids by manipulating the surface tensions of nanofibrous
    membranes. Angewandte Chemie International Edition, 54(49): p. 14732-14737,
    2015.
    55. Xiong, S., Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations. Journal of Membrane Science, 493: p. 478-485, 2015.
    56. Du, X., Switchable and simultaneous oil/water separation induced by prewetting with a superamphiphilic self-cleaning mesh. Chemical Engineering Journal, 313: p. 398-403, 2017.
    57. Wang, Y., Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nature Communication, 8(1): p. 575-580, 2017.
    58. Luo, Y. Q., X. Song, X. L. Wang, and Y. Z. Wang, A fully bio-based composite
    coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation. Colloid Interface Science, 549: p. 123-132, 2019.
    59. Pan, Y.,L. Liu, Z. Zhang, Z. Hao, and X. Zhao, Surfaces with controllable
    super-wettability and applications for smart oil-water separation. Chemical
    Engineering Journal, 378: p. 122178-122813, 2019.
    60. Li, L., Z. Xu, W. Sun, J. Chen, B. Yan, and H. Zeng, Bio-inspired membrane with
    adaptable wettability for smart oil/water separation. Journal of Membrane Science,
    598: p. 117661-117667, 2020.
    61. Liu, L., Y. Pan, K. Jiang, and X. Zhao, On-demand oil/water separation enabled by magnetic super-oleophobic/super-hydrophilic surfaces with solvent-responsive
    wettability transition. Applied Surface Science, 533: p. 147092-147101, 2020.
    62. Deng, D., D. P. Prendergast, and P. M. Gschwend, Hydrophobic meshes for oil spill recovery devices. ACS Applied Material Interfaces, 5(3): p. 774-781, 2013.
    63. Wang, Z., Y. Xu, Y. Liu, and L. Shao, A novel mussel-inspired strategy toward
    superhydrophobic surfaces for self-driven crude oil spill cleanup. Journal of Materials Chemistry A, 3(23): p. 12171-12178, 2015.
    64. Xue, C. H., Y. R. Li, J. L. Hou, L. Zhang, J. Z. Ma, S. T. Jia, Self-roughened
    superhydrophobic coatings for continuous oil–water separation. Journal of Materials Chemistry A, 3(19): p. 10248-10253, 2015.
    65. Qiu, S., L. Hou, J. Liu, F. Guo, L. Zhang, K. Liu, and Y. Zhao, High-flux, continuous
    oil spill collection by using a hydrophobic/oleophilic nanofibrous container. RSC
    Advances, 7(32): p. 19434-19438, 2017.
    66. Su, X., H. Li, X. Lai, Z. Chen, J. He, and X. Zeng, Dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states for water droplet transportation and oil-water separation. ACS Applied Material Interfaces, 10(4): p. 4213-4221, 2018.
    67. Kota, A. K., G. Kwon, W. Choi, J. M. Mabry, and A. Tuteja, Hygro-responsive
    membranes for effective oil-water separation. Nature Communications, 3: p.
    1025-1033, 2012.
    68. Dunderdale, G. J., C. Urata, T. Sato, M. W. England, and A. Hozumi, Continuous,
    high-speed, and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Applied Material Interfaces, 7(34): p. 18915-18919, 2015.
    69. Liu, J., L. Wang, F. Guo, L. Hou, Y. Chen, J. Li, N. Wang, Y. Zhao, and L. Jiang.
    Opposite and complementary: a superhydrophobic–superhydrophilic integrated
    system for high-flux, high-efficiency and continuous oil/water separation. Journal of Materials Chemistry A, 4(12): p. 4365-4370, 2016.
    70. Li, J., Y. Long, C. Xu, H. Tian, Y. Wu, and F. Zha, Continuous, high-flux and efficient
    oil/water separation assisted by an integrated system with opposite wettability.
    Applied Surface Science, 433: p. 374-380, 2018.
    71. Gong, Z., N. Yang, Z. Chen, B. Jiang, Y. Sun, X. Yang, and L. Zhang, Fabrication of
    meshes with inverse wettability based on the tio2 nanowires for continuous oil/water separation. Chemical Engineering Journal, 380: p. 122524-122530, 2020.
    72. Wang, F., S. Lei, M. Xue, J. Ou, and W. Li, In situ separation and collection of oil
    from water surface via a novel superoleophilic and superhydrophobic oil containment boom. Langmuir, 30(5): p. 1281-1289, 2014.
    73. Kim, S., H. Cho, and W. Hwang, Robust superhydrophilic depth filter and oil/water separation device with pressure control system for continuous oily water treatment on a large scale. Separation and Purification Technology, 256: p. 117779-117784, 2021.
    74. Wen, Q., J. Di, L. Jinag, J. Yu, and R. Xu, Zeolite-coated mesh film for efficient oil–
    water separation. Chemical Science, 4(2): p. 591-595, 2013.
    75. Kwak, M. J., Y. Yoo, H. S. Lee, J. Kim, J. Yang, J. Han, S. G. Im, and J. H. Kwon, A
    simple, cost-efficient method to separate microalgal lipids from wet biomass using
    surface energy-modified membranes. ACS Applied Material Interfaces, 8(1): p.600-608, 2016.
    76. Liu, H., A. Raza, A. Aili, J. Lu, A. Alghaferi, and T. Zhang, Sunlight-sensitive anti-fouling nanostructured tio2 coated cu meshes for ultrafast oily water treatment. Scientific Reports, 6: p. 25414-25419, 2016.
    77. Qing, W., X. Shi, Y. Deng, W. Zhang, J. Wang, and C. Y. Tang, Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. Journal of Membrane Science, 540: p. 354-361, 2017.
    78. Cohen T. D., and J. C. Grossman, Water permeability of nanoporous graphene at
    realistic pressures for reverse osmosis desalination. Chemical Physics, 141(7): p.
    52004-52010, 2014.
    79. Baker, R.W., Membrane technology and applications. John Wiley & Sons Inc., 2004.
    80. Peng, X., J. Jin, Y. Nakamura, T. Ohno, and I. Ichinose, Ultrafast permeation of water through protein-based membranes. Nature Nanotechnolology, 4(6): p. 353-357, 2009.
    81. Shi, Z., W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon
    nanotube network films. Advanced Materials, 25(17): p. 2422-2427, 2013.
    82. Lim, Y. T., N. Han, W. Jang, W. Jung, M. Oh, S. W. Han, H. Y. Koo, and W. S. Choi,
    Surface design of separators for oil/water separation with high separation capacity and mechanical stability. Langmuir, 33(32): p. 8012-8022, 2017.
    83. Coene, E., O. Silva, and J. Molinero, A numerical model for the performance
    assessment of hydrophobic meshes used for oil spill recovery. International Journal of Multiphase Flow, 99: p. 246-256, 2018.
    84. Luo, S. Y., L. W. Huang, C. Y. Hsieh, and Y. M. Yang, Performance characterization
    of hydrophobic/oleophilic fabric membranes for stratified oil-water separation.
    Applied Physics A, 128: 22 (12 pages), 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE