| 研究生: |
范明珠 Pham Minh Chau |
|---|---|
| 論文名稱: |
利用衞星影像監測近岸海水懸浮質濃度 USING SATELLITE IMAGES TO MONITOR SUSPENDED SEDIMENT CONCENTRATION IN COASTAL WATER |
| 指導教授: |
王驥魁
Wang, Chi-Kuei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 外文關鍵詞: | GOCI, suspended sediment concentration, Typhoon Soudelor, the spatial-temporal distribution, Formosat-5 (FS5), total suspended matter concentration , Ha Long Bay |
| 相關次數: | 點閱:101 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Suspended sediment (SS) concentration, also known by other names such as total suspended solids (TSS) concentration or total suspended matter (TSM), is an important index of water quality in shallow water areas such as coastal water regions, river estuaries, lagoons, and bays. By studying suspended sediment concentration, we can better understand the coastal ecosystem and environment, the marine biochemical processes, oceanic topography, geomorphology, etc. Therefore, in this study, the author carried out two independent research topics using satellite images to study SS characteristics in the northern coastal area of Taiwan and a Bay in northern Vietnam. Firstly, the author considers monitoring the spatial-temporal distribution of SS in the coastal area of Taiwan impacted by Typhoon Soudelor in 2015. The purpose of this study is to indicate geostationary satellite images with high resolution can be a possible solution to monitor the change in suspended sediment concentration due to a typhoon influence. By using the Geostationary Ocean Color Imager (GOCI) satellite images with 500m resolution and eight images/day, the study shows that GOCI can be used to monitor suspended sediment concentrations before and after a typhoon. Specifically, we used hourly image data of three different periods before and after the typhoon to generate a non-linear model to monitor the change in the spatial distribution of suspended sediment along the coastal water in the north of Taiwan. The results show that the SSC quickly increased to the highest level 3-4 days after the typhoon and then gradually decreased to its status before the typhoon about 15-20 days later. In addition, it also indicates that river discharges are a source of SSC after typhoons to coastal areas. The Daan, Tam Sui, and Lanyang rivers are the three largest sources of SS in the northern coastal area of Taiwan. Secondly, we propose to use Formosat-5 (FS5) satellite images to study suspended sediment concentrations in Ha Long Bay, Vietnam. This study aims to evaluate whether FS5 image could be used for mapping SS in coastal water.
The research problem is that there is no atmospheric correction method and suspended sediment concentration algorithm developed for FS5, therefore, the author focuses on evaluating and choosing a simple approach to solve these two problems. The results show that using linear regression is a suitable solution to convert the Digital Number (DN) to Remote sensing reflectance (Rrs) based on reference data of ground targets from the Landsat-8 Operational Land Imager (OLI) image. OLI reference images were processed by using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model and downloaded from the United States Geological Survey (USGS) website providing good results for this solution. To overcome the limitation of no TSM algorithm, we choose two different algorithms that use the red band and then compare the results to find out which algorithm can be used for FS5. The algorithms include an international algorithm developed by Nechad et al., suitable for Vietnamese waters and an algorithm developed by Richard et al. for the previous sensor Formosat-2 (FS2). The FS5-derived TSM is compared with the reference data of the OLI-derived TSM image based on the histogram, accuracy assessment with RMSE, and spatial distribution map. The results show that the Nechad et al. algorithm can be used to estimate the suspended sediment concentration in Ha Long Bay.
Bibliography
1. Platt, T.; Hoepffner, N.; Stuart, V.; Brown, C.; Acker, J.; Asanuma, I.; Bernard, S.; Bontempi, P.; Campbell, G.; Dierssen, H.; et al.Reports and Monographs of the International Ocean-Colour Coordinating Group Why Ocean Colour ? The Societal Benefits of Ocean- Colour Technology Edited by : Reports Int. Ocean. Coord. Gr. No.7 2008.
2. Lewis, K.M.; Arrigo, K.R.Ocean Color Algorithms for Estimating Chlorophyll a, CDOM Absorption, and Particle Backscattering in the Arctic Ocean. J. Geophys. Res. Ocean. 2020, 125, e2019JC015706, doi:https://doi.org/10.1029/2019JC015706.
3. Parsons, A.J.; Cooper, J.; Wainwright, J.What is suspended sediment? Earth Surf. Process. Landforms 2015, 40, 1417–1420, doi:10.1002/esp.3730.
4. BC Ministry of Environment and Climate Change StrategyTurbidity, Suspending and Benthic Sediments Water Quality Guidelines (Reformatted Guideline from 1997). Technical Appendix. 2021, 117.
5. Cravo-Laureau, C.; Duran, R.Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era . Front. Microbiol. 2014, 5.
6. Fan, Z.; Jia, Y.; Chu, F.; Zhu, X.; Zhu, N.; Li, B.; Quan, Y.Effects of Migration and Diffusion of Suspended Sediments on the Seabed Environment during Exploitation of Deep-Sea Polymetallic Nodules. Water 2022, 14.
7. Jaeger, K.L.; Sutfin, N.A.; Tooth, S.; Michaelides, K.; Singer, M.Chapter 2.1 - Geomorphology and Sediment Regimes of Intermittent Rivers and Ephemeral Streams. In; Datry, T., Bonada, N., Boulton, A.B.T.-I.R. and E.S., Eds.; Academic Press, 2017; pp. 21–49 ISBN 978-0-12-803835-2.
8. Snelgrove, P.V.R.; Henry Blackburn, T.; Hutchings, P.A.; Alongi, D.M.; Frederick Grassle, J.; Hummel, H.; King, G.; Koike, I.; Lambshead, P.J.D.; Ramsing, N.B.; et al.The importance of marine sediment biodiversity in ecosystem processes. Ambio 1997, 26, 578–583, doi:10.2307/4314672.
9. Chen, S.; Huang, W.; Wang, H.; Li, D.Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA. Remote Sens. Environ. 2009, 113, 2670–2681, doi:10.1016/j.rse.2009.08.005.
10. Ezzeldin, M.M.; Rageh, O.; Saad, M.E.Navigation channel problems due to sedimentation. Int. Marit. Logist. Conf. 2019.
11. Erftemeijer, P.L.A.; Riegl, B.; Hoeksema, B.W.; Todd, P.A.Environmental impacts of dredging and other sediment disturbances on corals: A review. Mar. Pollut. Bull. 2012, 64, 1737–1765, doi:10.1016/j.marpolbul.2012.05.008.
12. Crosa, G.; Castelli, E.; Gentili, G.; Espa, P.Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquat. Sci. 2010, 72, 85–95, doi:10.1007/s00027-009-0117-z.
13. EPAANALYTICAL MONITORING A How-To Reference for EPA’s 2013 Vessel General Permit (VGP). 2014, 36.
14. Clark, B.; Suomalainen, J.; Pellikka, P.The selection of appropriate spectrally bright pseudo-invariant ground targets for use in empirical line calibration of SPOT satellite imagery. ISPRS J. Photogramm. Remote Sens. 2011, 66, 429–445, doi:10.1016/j.isprsjprs.2011.02.003.
15. Mueller, P.; Thoss, H.; Kaempf, L.; Güntner, A.A buoy for continuous monitoring of suspended sediment dynamics. Sensors (Switzerland) 2013, 13, 13779–13801, doi:10.3390/s131013779.
16. Wang, S.Y.Computer Simulation of Sedimentation Processes BT - Finite Elements in Water Resources.; Holz, K.P., Meissner, U., Zielke, W., Brebbia, C.A., Pinder, G., Gray, W., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1982; pp. 983–994.
17. Zhang, Y.; Giardino, C.; Li, L.Remote Sensing. 2017,.
18. Long, C.M.; Pavelsky, T.M.Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 2013, 129, 197–209, doi:10.1016/j.rse.2012.10.019.
19. Wong, M.S.; Nichol, J.E.; Lee, K.H.; Emerson, N.Modeling water quality using Terra/MODIS 500m satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2008, 37, 679–684.
20. Rodríguez, V.; Gilbes, F.Using MODIS 250 m Imagery to Estimate Total Suspended Sediment in a Tropical Open Bay. Int. J. Syst. Appl. Eng. Dev. 2009, 3, 36–44.
21. Yang, G.; Wang, X.H.; Ritchie, E.A.; Qiao, L.; Li, G.; Cheng, Z.Using 250-M surface reflectance MODIS Aqua/Terra product to estimate turbidity in a macro-tidal harbour: Darwin Harbour, Australia. Remote Sens. 2018, 10, 1–26, doi:10.3390/rs10070997.
22. Rodrigues, G.; Potes, M.; Penha, A.M.; Costa, M.J.; Morais, M.M.The Use of Sentinel-3/OLCI for Monitoring the Water Quality and Optical Water Types in the Largest Portuguese Reservoir. Remote Sens. 2022, 14, doi:10.3390/rs14092172.
23. Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B.Mapping water quality parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, doi:10.3390/rs9101070.
24. Miller, R.L.; Liu, C.C.; Buonassissi, C.J.; Wu, A.M.A multi-sensor approach to examining the distribution of total suspended matter (TSM) in the Albemarle-Pamlico Estuarine System, NC, USA. Remote Sens. 2011, 3, 962–974, doi:10.3390/rs3050962.
25. Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M.Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101, doi:10.1016/j.rse.2011.09.026.
26. Lee, M.; Park, K.; Chung, J.; Ahn, Y.; Moon, J.Estimation of Coastal Suspended Sediment Concentration using Satellite Data and Oceanic In-Situ Measurements. Korean J. Remote Sens. 2011, 27, 677–692, doi:DOI: 10.7780/kjrs.2011.27.6.677.
27. Choi, J.K.; Park, Y.J.; Ahn, J.H.; Lim, H.S.; Eom, J.; Ryu, J.H.GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Ocean. 2012, 117, 1–10, doi:10.1029/2012JC008046.
28. Dorji, P.; Fearns, P.Atmospheric correction of geostationary Himawari-8 satellite data for Total Suspended Sediment mapping: A case study in the Coastal Waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 2018, doi:10.1016/j.isprsjprs.2018.06.019.
29. Ngoc, D.D.; Loisel, H.; Vantrepotte, V.; Xuan, H.C.; Minh, N.N.; Verpoorter, C.; Meriaux, X.; Minh, H.P.T.; Thi, H.Le; Hong, H.L.V.; et al.A simple empirical band-ratio algorithm to assess suspended particulate matter from remote sensing over coastal and inland waters of vietnam: Application to the VNREDSat-1/NAOMI sensor. Water (Switzerland) 2020, 12, 1–16, doi:10.3390/w12092636.
30. Yang Kai-Jie, Chih-Hua Chang, Cheng-Chien Liu, Y.-S.C. 4Integration of MODIS and Formosat-2 Imagery for the Development of a Reliable and High-Tempospatial-Resolution Total Suspended Matter Concentration Retrieval Model: Case Study in Goaping River Mouth. J. Photogramm. Remote Sens. 2013, 17, 53–65.
31. Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B.Potential of high spatial and temporal ocean color satellite data to study the dynamics of suspended particles in a micro-tidal river plume. Remote Sens. 2016, 8, doi:10.3390/rs8030245.
32. Heege, T.; Kiselev, V.; Wettle, M.; Hung, N.N.Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. Int. J. Remote Sens. 2014, 35, doi:10.1080/01431161.2014.890300.
33. Loisel, H.; Mangin, A.; Vantrepotte, V.; Dessailly, D.; Ngoc Dinh, D.; Garnesson, P.; Ouillon, S.; Lefebvre, J.P.; Mériaux, X.; Minh Phan, T.Variability of suspended particulate matter concentration in coastal waters under the Mekong’s influence from ocean color (MERIS) remote sensing over the last decade. Remote Sens. Environ. 2014, 150, doi:10.1016/j.rse.2014.05.006.
34. Vu, D.T.; Yamada, T.; Ishidaira, H.Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639, doi:10.2166/wst.2018.038.
35. Ouillon, S.Why and how do we study sediment transport? Focus on coastal zones and ongoing methods. Water (Switzerland) 2018, 10, 1–34, doi:10.3390/w10040390.
36. Melet, A.; Teatini, P.; LeCozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R.Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers; Springer Netherlands, 2020; Vol. 41; ISBN 0123456789.
37. Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; et al.Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience Remote Sens. 2019, 00, 1–16, doi:10.1080/15481603.2019.1685198.
38. Jensen, R.E.; Swail, V.; Bouchard, R.H.Quantifying wave measurement differences in historical and present wave buoy systems. Ocean Dyn. 2021, 71, 731–755, doi:10.1007/s10236-021-01461-0.
39. Hatfield, D.; Hasager, C.B.; Karagali, I.Comparing Offshore Ferry Lidar Measurements in the Southern Baltic Sea with ASCAT, FINO2 and WRF. Remote Sens. 2022, 14, 1427, doi:10.3390/rs14061427.
40. Bean, T.P.; Greenwood, N.; Beckett, R.; Biermann, L.; Bignell, J.P.; Brant, J.L.; Copp, G.H.; Devlin, M.J.; Dye, S.; Feist, S.W.; et al.a review of the tools used for marine monitoring in the UK: Combining historic and contemporary methods with modeling and socioeconomics to fulfill legislative needs and scientific ambitions. Front. Mar. Sci. 2017, 4, doi:10.3389/fmars.2017.00263.
41. Volpe, V.; Silvestri, S.; Marani, M.Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 2011, 115, 44–54, doi:10.1016/j.rse.2010.07.013.
42. Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B.Potential of high spatial and temporal ocean color satellite data to study the dynamics of suspended particles in a micro-tidal river plume. Remote Sens. 2016, 8, doi:10.3390/rs8030245.
43. Li, Y.; Li, D.; Fang, J.; Yin, X.; Li, H.; Hu, W.; Chen, J.Impact of Typhoon Morakot on suspended matter size distributions on the East China Sea inner shelf. Cont. Shelf Res. 2015, 101, 47–58, doi:10.1016/j.csr.2015.04.007.
44. He, X.B.-T.A.-C.H.-R.W.Z.L.Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon. J. Geophys. Res. Ocean. 2014, 119, 1706–1722, doi:10.1002/2013JC009366.Received.
45. Liu, J.; Cai, S.; Wang, S.Observations of strong near-bottom current after the passage of Typhoon Pabuk in the South China Sea. J. Mar. Syst. 2011, 87, 102–108, doi:10.1016/j.jmarsys.2011.02.023.
46. Miles, T.; Seroka, G.; Kohut, J.; Schofield, O.; Glenn, S.Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. Ocean. 2015, 120, 1771–1791, doi:10.1002/2014JC010474.
47. Li, Y.; Wang, A.; Qiao, L.; Fang, J.; Chen, J.The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang-Fujian coast, China. Cont. Shelf Res. 2012, 37, 92–100, doi:10.1016/j.csr.2012.02.020.
48. Li, Y.; Li, H.; Qiao, L.; Xu, Y.; Yin, X.; He, J.Storm deposition layer on the Fujian coast generated by Typhoon Saola (2012). Sci. Rep. 2015, 5, 1–7, doi:10.1038/srep14904.
49. Li, Y.; Li, X.Remote sensing observations and numerical studies of a super typhoon-induce d suspende d se diment concentration variation in the East China Sea. Ocean Model. 2016, 104, 187–202, doi:10.1016/j.ocemod.2016.06.010.
50. Doxaran, D.; Lamquin, N.; Park, Y.J.; Mazeran, C.; Ryu, J.H.; Wang, M.; Poteau, A.Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 2014, 146, 36–48, doi:10.1016/j.rse.2013.06.020.
51. Li, Y.; Xu, X.; Yin, X.; Fang, J.; Hu, W.; Chen, J.Remote-sensing observations of Typhoon Soulik ( 2013 ) forced upwelling and sediment transport enhancement in the northern Taiwan Strait. Int. J. Remote Sens. 2015, 36, 2201–2218, doi:10.1080/01431161.2015.1035407.
52. Li, Y.; Xu, X.; Zheng, B.Satellite views of cross-strait sediment transport in the Taiwan Strait driven by Typhoon Morakot ( 2009 ). Cont. Shelf Res. 2018, 166, 54–64, doi:10.1016/j.csr.2018.07.004.
53. Yang, H.; Choi, J.-K.; Park, Y.-J.; Han, H.-J.; Joo-HyuApplication of the Geostationary Ocean Color Imager (GOCI) to estimates of ocean surface currents. J. Geophys. Res. Ocean. 2014, 1022–1037, doi:10.1002/2014JC009981.
54. Moon, Jeong-Eon; Ahn, Yu-Hwan; Ryu, Joo-Hyung; Shanmugam, P.Development of Ocean Environmental Algorithms for Geostationary Ocean Color Imager (GOCI). Korean J. Remote Sens. 2010, 26, 189–207.
55. Ryu, J.H.; Han, H.J.; Cho, S.; Park, Y.J.; Ahn, Y.H.Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J. 2012, 47, 223–233, doi:10.1007/s12601-012-0024-4.
56. Moon, J.E.; Park, Y.J.; Ryu, J.H.; Choi, J.K.; Ahn, J.H.; Min, J.E.; Son, Y.B.; Lee, S.J.; Han, H.J.; Ahn, Y.H.Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010-2011. Ocean Sci. J. 2012, 47, 261–277, doi:10.1007/s12601-012-0027-1.
57. Cheng, Z.; Wang, X.H.; Paull, D.; Gao, J.Application of the Geostationary Ocean Color Imager to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary. Remote Sens. 2016, 8, doi:10.3390/rs8030244.
58. Huang, C.; Yang, H.; Zhu, A.X.; Zhang, M.; Lü, H.; Huang, T.; Zou, J.; Li, Y.Evaluation of the Geostationary Ocean Color Imager (GOCI) to monitor the dynamic characteristics of suspension sediment in Taihu Lake. Int. J. Remote Sens. 2015, 36, 3859–3874, doi:10.1080/01431161.2015.1070323.
59. Qiu, Z.; Zheng, L.; Zhou, Y.; Sun, D.; Wang, S.; Wu, W.Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area. Opt. Express 2015, 23, A1179, doi:10.1364/OE.23.0A1179.
60. Choi, J.-K.; Yang, H.; Han, H.-J.; Ryu, J.-H.; Park, Y.-J.Quantitative estimation of suspended sediment movements in coastal region using GOCI. J. Coast. Res. 2013, 165, 1367–1372, doi:10.2112/SI65-231.1.
61. Warren., M.A.Estimation of ocean surface currents from maximum cross correlation applied to GOCI geostationary satellite remote sensing data over the Tsushima (Korea) Straits. J. Geophys. Res. Ocean. 2016, 121, 6993– 7009, doi:10.1002/2016JC011814.
62. Taiwan River Restotation NetworkThe list of central rivers Available online: http://trrn.wra.gov.tw/web/index-18.html (accessed on Apr 26, 2020).
63. Jan, S.; Wang, J.; Yang, Y.J.; Hung, C.C.; Chern, C.S.; Gawarkiewicz, G.; Lien, R.C.; Centurioni, L.; Kuo, J.Y.; Wang, B.Observations of a freshwater pulse induced by typhoon Morakot off the northern coast of Taiwan in August 2009. J. Mar. Res. 2013, 71, 19–46, doi:10.1357/002224013807343452.
64. Kao, S.J.; Jan, S.; Hsu, S.C.; Lee, T.Y.; Dai, M.Sediment budget in the Taiwan Strait with high fluvial sediment inputs from mountainous rivers: New observations and synthesis. Terr. Atmos. Ocean. Sci. 2008, 19, 525–546, doi:10.3319/TAO.2008.19.5.525(Oc).
65. National Hurricane CentreSaffir-Simpson Hurricane Wind Scale. Wind scale 2012, 3–4.
66. TyphoonTaiwan’s Typhoon Data Base Available online: http://rdc28.cwb.gov.tw/TDB/ntdb/pageControl/typhoon?year=2015&num=201513&name=SOUDELOR&from_warning=tru.
67. Fakour, H.; Lo, S.L.; Lin, T.F.Impacts of Typhoon Soudelor (2015) on the water quality of Taipei, Taiwan. Sci. Rep. 2016, 6, 1–11, doi:10.1038/srep25228.
68. Soudelor, T.Deadly Typhoon Soudelor’s Rainfall Analyzed Available online: https://pmm.nasa.gov/extreme-weather/deadly-typhoon-soudelors-rainfall-analyzed.
69. SoudelorTyphoon Soudelor wiki Available online: https://en.wikipedia.org/wiki/Typhoon_Soudelor.
70. Technologies, M.GDPS Ver.2.0 User ’ s Manual; 2018;
71. Brockmann ConsultL3 / Binning Tool Available online: http://www.brockmann-consult.de/beam/doc/help-4.8/binning/BinningAlgorithmDescription.html.
72. Campbell, J.W.; Blaisdell, J.M.; Darzi, M.Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms. SeaWiFS Tech. Rep. Ser. 1995, 32, 80.
73. Milliman, J.D.; Lee, T.Y.; Huang, J.C.; Kao, S.J.Temporal and spatial responses of river discharge to tectonic and climatic perturbations : Choshui River , Taiwan , and Typhoon Mindulle ( 2004 ). 2015, 29, 11–14, doi:10.5194/piahs-367-29-2015.
74. Chien, H.; Chiang, W.-S.; Kao, S.-J.; Liu, J.T.; Liu, K.-K.; Liu, .-F; Taiwan, C.; H Wa C H I, E.N.Sediment Dynamics observed in the Jhoushuei River and Adjacent Coastal Zone in Taiwan Strait. Oceanography 2011, 24, 122–131, doi:10.5670/oceanog.2011.100.
75. Lin, G.W.; Chen, H.; Chen, Y.H.; Horng, M.J.Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Eng. Geol. 2008, 97, 32–41, doi:10.1016/j.enggeo.2007.12.001.
76. Chen, C.W.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Chen, H.; Lin, G.W.; Wei, L.W.; Chao, Y.C.Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan. Geomorphology 2018, 303, 540–548, doi:10.1016/j.geomorph.2017.11.007.
77. Hung, C.; Lin, G.-W.; Kuo, H.-L.; Zhang, J.-M.; Chen, C.-W.; Chen, H.Impact of an Extreme Typhoon Event on Subsequent Sediment Discharges and Rainfall-Driven Landslides in Affected Mountainous Regions of Taiwan. Geofluids 2018, 2018, 1–11, doi:10.1155/2018/8126518.
78. Liu, W.C.; Chen, W.B.; Cheng, R.T.; Hsu, M.H.Modelling the impact of wind stress and river discharge on Danshuei River plume. Appl. Math. Model. 2008, 32, 1255–1280, doi:10.1016/j.apm.2007.03.009.
79. Water Resources Planning Institute, Water Resources Agency, Ministry of Economic Affairs Available online: https://www.wrap.gov.tw/pro12.aspx?type=0201000000.
80. Wang, Y.H.; Jan, S.; Wang, D.P.Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001). Estuar. Coast. Shelf Sci. 2003, 57, 193–199, doi:10.1016/S0272-7714(02)00344-X.
81. Liu, J.; Emery, W.; Wu, X.; Li, M.; Li, C.; Zhang, L.Computing Coastal Ocean Surface Currents from MODIS and VIIRS Satellite Imagery. Remote Sens. 2017, 9, 1083, doi:10.3390/rs9101083.
82. Volpe, V.; Silvestri, S.; Marani, M.Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 2011, 115, 44–54, doi:10.1016/j.rse.2010.07.013.
83. Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M.Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101, doi:10.1016/j.rse.2011.09.026.
84. Yuei-An, L.; Kar, S.K.; Chang, L.Use of high-resolution formosat-2 satellite images for post-earthquake disaster assessment: A study following the 12 may 2008 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3355–3368, doi:10.1080/01431161003727655.
85. Chen, K.S.; Wu, A.M.; Chern, J.S.; Chen, L.C.; Chang, W.Y.FORMOSAT-2 mission: Current status and contributions to earth observations. Proc. IEEE 2010, 98, 878–891, doi:10.1109/JPROC.2009.2035355.
86. Courault, D.; Bsaibes, A.; Kpemlie, E.; Hadria, R.; Hagolle, O.; Marloie, O.; Hanocq, J.F.; Olioso, A.; Bertrand, N.; Desfonds, V.Assessing the potentialities of FORMOSAT-2 data for water and crop monitoring at small regional scale in South-Eastern France. Sensors 2008, 8, 3460–3481, doi:10.3390/s8053460.
87. Chung, H.W.; Liu, C.C.; Chiu, Y.S.; Liu, J.T.Spatiotemporal variation of Gaoping River plume observed by Formosat-2 high resolution imagery. J. Mar. Syst. 2014, 132, 28–37, doi:10.1016/J.JMARSYS.2013.12.011.
88. Chang, C.H.; Liu, C.C.; Wen, C.G.; Cheng, I.F.; Tam, C.K.; Huang, C.S.Monitoring reservoir water quality with Formosat-2 high spatiotemporal imagery. J. Environ. Monit. 2009, 11, 1982–1992, doi:10.1039/b912897b.
89. Mograne, M.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A.Evaluation of Five Atmospheric Correction Algorithms over French Optically-Complex Waters for the Sentinel-3A OLCI Ocean Color Sensor. Remote Sens. 2019, 11, 668, doi:10.3390/rs11060668.
90. He, Q.; Chen, C.A new approach for atmospheric correction of MODIS imagery in turbid coastal waters: A case study for the Pearl River Estuary. Remote Sens. Lett. 2014, 5, 249–257, doi:10.1080/2150704X.2014.898192.
91. Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A.The assessment of landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sens. 2019, 11, doi:10.3390/rs11020169.
92. DeKeukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van derZande, D.; et al.Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, doi:10.1080/22797254.2018.1457937.
93. Pompilio, L.; Marinangeli, L.; Amitrano, L.; Pacci, G.; D’Andrea, S.; Iacullo, S.; Monaco, E.Application of the empirical line method (ELM) to calibrate the airborne Daedalus-CZCS scanner. Eur. J. Remote Sens. 2018, 51, 33–46, doi:10.1080/22797254.2017.1399087.
94. Ariza, A.; Robredo Irizar, M.; Bayer, S.Empirical line model for the atmospheric correction of sentinel-2A MSI images in the Caribbean Islands. Eur. J. Remote Sens. 2018, 51, 765–776, doi:10.1080/22797254.2018.1482732.
95. Karpouzli, E.; Malthus, T.The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 2003, 24, 1143–1150, doi:10.1080/0143116021000026779.
96. Moran, M.S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; Gonzalez-Dugo, M.P.; Qi, J.; Clarke, T.R.A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82, doi:10.1016/S0034-4257(01)00250-4.
97. Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E.A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168, doi:10.1016/j.rse.2014.09.020.
98. Miller, R.L.; McKee, B.A.Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266, doi:10.1016/j.rse.2004.07.012.
99. Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al.Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters. Remote Sens. Environ. 2020, 246, 111768, doi:10.1016/j.rse.2020.111768.
100. Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al.An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sens. Environ. 2020, 239, 111648, doi:10.1016/j.rse.2020.111648.
101. Huang, C.C.; Chang, M.J.; Lin, G.F.; Wu, M.C.; Wang, P.H.Real-time forecasting of suspended sediment concentrations reservoirs by the optimal integration of multiple machine learning techniques. J. Hydrol. Reg. Stud. 2021, 34, 100804, doi:10.1016/j.ejrh.2021.100804.
102. Qiu, Z.; Xiao, C.; Perrie, W.; Sun, D.; Wang, S.; Shen, H.; Yang, D.; He, Y.Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary. J. Geophys. Res. Ocean. 2017, 122, 276–290.
103. Qiu, Z.A simple optical model to estimate suspended particulate matter in Yellow River Estuary. Opt. Express 2013, 21, 27891, doi:10.1364/OE.21.027891.
104. Vanhellemont, Q.; Ruddick, K.Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284, doi:10.1016/j.rse.2021.112284.
105. Wang, H.; Wang, J.; Cui, Y.; Yan, S.Consistency of suspended particulate matter concentration in turbid water retrieved from sentinel-2 msi and landsat-8 oli sensors. Sensors 2021, 21, 1–15, doi:10.3390/s21051662.
106. Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N.Regional models for high-resolution retrieval of chlorophyll a and TSM concentrations in the Gorky Reservoir by Sentinel-2 imagery. Remote Sens. 2019, 11, doi:10.3390/rs11101215.
107. Nazirova, K.; Alferyeva, Y.; Lavrova, O.; Shur, Y.; Soloviev, D.; Bocharova, T.; Strochkov, A.Comparison of in situ and remote-sensing methods to determine turbidity and concentration of suspended matter in the estuary zone of the mzymta river, black sea. Remote Sens. 2021, 13, 1–29, doi:10.3390/rs13010143.
108. Aswathy, T.S.; Achu, A.L.; Francis, S.; Gopinath, G.; Joseph, S.; Surendran, U.; Sunil, P.S.Assessment of water quality in a tropical ramsar wetland of southern India in the wake of COVID-19. Remote Sens. Appl. Soc. Environ. 2021, 23, 100604, doi:10.1016/j.rsase.2021.100604.
109. Loisel, H.; Vantrepotte, V.; Ouillon, S.; Ngoc, D.D.; Herrmann, M.; Tran, V.; Mériaux, X.; Dessailly, D.; Jamet, C.; Duhaut, T.; et al.Assessment and analysis of the chlorophyll-a concentration variability over the Vietnamese coastal waters from the MERIS ocean color sensor (2002–2012). Remote Sens. Environ. 2017, 190, 217–232, doi:10.1016/j.rse.2016.12.016.
110. Nechad, B.; Ruddick, K.G.; Park, Y.Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866, doi:10.1016/j.rse.2009.11.022.
111. Le, T.A.Situation Analysis of the Water Quality of Ha Long Bay, Quang Ninh Province, Vietnam: A social study from tourism businesses’ perspectives; 2015;
112. Republic, S.; Ninh, Q.; People, P.The Project for Environmental Protection in Halong Bay; 2013; Vol. 2;.
113. Nguyen, M.H.; Ouillon, S.; Vu, D.V.Seasonal variation of suspended sediment and its relationship with turbidity in Cam - Nam Trieu estuary, Hai Phong (Vietnam). Tạp chí Khoa học và Công nghệ Biển 2021, 21, 271–282, doi:10.15625/1859-3097/16076.
114. Vinh, V.D.; Ouillon, S.; Thanh, T.D.; Chu, L.V.Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci. 2014, 18, 3987–4005, doi:10.5194/hess-18-3987-2014.
115. Vinh, V.D.; Uu, D.Vanthe Influence of Wind and Oceanographic Factors on Characteristics of Suspended Sediment Transport in Bach Dang Estuary. Tạp chí Khoa học và Công nghệ Biển 2013, 13, doi:10.15625/jmst.v13i3.3526.
116. Tu, T.A.Đánh giá đặc trưng trầm tích lơ lửng khu vực cửa sông ven biển Hải Phòng., 2012.
117. Lin, T.H.; Chang, J.C.; Hsu, K.H.; Lee, Y.S.; Zeng, S.K.; Liu, G.R.; Tsai, F.A.; Chan, H.P.Radiometric variations of On-Orbit FORMOSAT-5 RSI from vicarious and cross-calibration measurements. Remote Sens. 2019, 11, doi:10.3390/rs11222634.
118. Spectral SciencesFast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH). Harris Geospatial Doc. Cent. 2019, 1–17.
119. Vanhellemont, Q.; Ruddick, K.ACOLITE processing for Sentinel-2 and Landsat-8: atmospheric correction and aquatic applications. Living Planet Symp. 2016.
120. Brockmann, C.EVOLUTION OF THE C2RCC NEURAL NETWORK FOR SENTINEL 2 AND 3 FOR THE RETRIEVAL OF OCEAN COLOUR PRODUCTS IN NORMAL AND EXTREME OPTICALLY COMPLEX WATERS.
121. L3Harris GeospatialFast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH). Fast Line-of-sight Atmos. Anal. Hypercubes 2020, 1–6.
122. Baugh, W.M.; Groeneveld, D.P.Empirical proof of the empirical line. Int. J. Remote Sens. 2008, 29, 665–672, doi:10.1080/01431160701352162.
123. Hamm, N.A.S.; Atkinson, P.M.; Milton, E.J.A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing. Remote Sens. Environ. 2012, 124, 666–678, doi:10.1016/j.rse.2012.05.033.
124. Vanhellemont, Q.; Ruddick, K.Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597, doi:10.1016/j.rse.2018.07.015.
125. Vanhellemont, Q.Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948, doi:10.1364/oe.397456.
126. Vanhellemont, Q.Daily metre-scale mapping of water turbidity using CubeSat imagery. Opt. Express 2019, 27, A1372, doi:10.1364/oe.27.0a1372.
127. Nechad, B.; Ruddick, K.G.; Park, Y.Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866, doi:10.1016/j.rse.2009.11.022.