| 研究生: |
戴世煌 Tai, Shih-Huang |
|---|---|
| 論文名稱: |
鋰鹽於缺血性腦中風之神經保護與神經再塑之研究 Neuroplasticity and neuroprotective potential of lithium in ischemic stroke |
| 指導教授: |
沈延盛
Shan, Yan-Shen 李宜堅 Lee, E-Jian |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 缺血性中風 、鋰鹽 、神經保護 、神經再塑 |
| 外文關鍵詞: | ischemic stroke, lithium, neuroprotection, neuroplasticity |
| 相關次數: | 點閱:88 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰鹽為臨床上常見使用於躁鬱症和憂鬱症藥物,目前已知鋰鹽對腦神經具有多種神經保護效果。在本研究中我們以短期給藥方式治療缺血性中風大鼠並評估其腦梗塞體積、電生理和神經行為中長期檢測結果,在離體神經元實驗中分析蛋白表現,以釐清鋰鹽介導的神經保護與神經再塑機制。研究中使用中大腦動脈栓塞動物模型(MCAO)模擬缺血性中風,在手術後72小時內每24小時給予鋰鹽或生理食鹽水。在動物實驗中以體感覺誘發電位(SSEP)記錄和神經行為測試來評估鋰鹽的功能性恢復的治療效果,並以病理切片染色計算腦梗塞體積和高基氏染色評估神經棘的密度。在離體培養神經元實驗中,我們將神經元曝露於缺糖缺氧環境(OGD)中,以免疫螢光染色MAP2評估樹突軸突形態和西方點墨法評估BDNF、GAP-43、PSD-95 和 SNAP-25 蛋白表現量來了解鋰鹽於神經再塑之效益。相對於控制組,鋰鹽在傷害後7 天或 28 天皆顯著減少缺血腦的梗塞體積,並顯著改善了電生理和神經行為結果。在缺血傷害後第7天可以觀察到鋰鹽明顯增加腦皮質神經棘密度,並導致對側腦半球樹突結構的發展。在離體培養神經元中,給予鋰鹽可增加神經元的樹突長度和分支數量,並於 OGD 後 24 小時或 48 小時內增強了 BDNF、GAP-43 和 PSD-95 蛋白的表達。我們的研究證實,鋰鹽可經由調控 BDNF、GAP-43 和 PSD-95 蛋白改善缺血性傷害後神經再塑並提供中長期神經保護作用。
Lithium is well known to help patients with bipolar disorder and depression, and it has numerous neuroprotective effects on stroke. In this study, we assessed whether short-term lithium treatment would reduce brain damage and improve electrophysiological and neurobehavioral outcomes following long-term cerebral ischemia recovery. We assessed the neuroplasticity-associated protein expression in cortical neurons to determine the contribution of lithium to neuroplasticity. The beneficial neuroprotective effects of lithium were assessed using somatosensory evoked potential recordings and neurobehavioral testing. Brain infarction was assessed by Nissl-stained histology, and Golgi-cox-stained dendritic spine density was assessed. To examine the impact of lithium-induced neuroplasticity, we evaluated neuronal dendritic morphology and GAP-43, BDNF, SNAP-25, and PSD-95 protein expression in cortical neurons exposed to oxygen-glucose deprivation (OGD). Compared to the controls, lithium significantly improved the electrophysiological and neurobehavioral outcomes and reduced infarction volume at 7 or 28 days post-insults. In vivo, lithium treatment increased the cortical dendritic spine density in the cortical layers and developed a dendritic structure in the contralateral hemisphere. Lithium also improved dendritic lengths and branches in cultured cortical neurons and enhanced BDNF, GAP-43, and PSD-95 protein expression 24 h or 48 h after exposure to OGD. Our study confirmed that lithium upregulates BDNF, GAP-43, and PSD-95, partly causing the improvement in neuroplasticity and providing long-term neuroprotection in the ischemic brain.
1. Ovbiagele B, Nguyen-Huynh MN. Stroke Epidemiology: Advancing Our Understanding of Disease Mechanism and Therapy. Neurotherapeutics. 2011 Jul;8(3):319-329.
2. Paolucci S. Epidemiology and treatment of post-stroke depression. Neuropsychiatr Dis Treat. 2008 Feb;4(1):145-54.
3. Gillen R, Tennen H, McKee TE, et al. Depressive symptoms and history of depression predict rehabilitation efficiency in stroke patients. Arch Phys Med Rehabil. 2001 Dec;82(12):1645-9.
4. Kauhanen M, Korpelainen JT, Hiltunen P, et al. Poststroke depression correlates with cognitive impairment and neurological deficits. Stroke. 1999 Sep;30(9):1875-80.
5. Won E, Kim YK. An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci. 2017 Dec;18(12):2679.
6. Bschor T. Lithium in the treatment of major depressive disorder. Drugs. 2014 Jun;74(8):855-62.
7. Ren M, Senatorov VV, Chen RW, et al. Postinsult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6210-5.
8. Zhu ZF, Wang QG, Han BJ, et al. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull. 2010 Oct 30;83(5):272-7.
9. Zhao Q, Liu H, Cheng J, et al. Neuroprotective effects of lithium on a chronic MPTP mouse model of Parkinson's disease via regulation of alphasynuclein methylation. Mol Med Rep. 2019 Jun;19(6):4989-4997.
10. Chuang DM, Chen RW, Chalecka-Franaszek E, et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002 Apr;4(2):129-36.
11. Chuang DM, Wang Z, Chiu CT. GSK-3 as a Target for Lithium-Induced Neuroprotection Against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Front Mol Neurosci. 2011;4:15.
12. Wada A. Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades. J Pharmacol Sci. 2009 May;110(1):14-28.
13. Wang ZF, Fessler EB, Chuang DM. Beneficial effects of mood stabilizers lithium, valproate and lamotrigine in experimental stroke models. Acta Pharmacol Sin. 2011 Dec;32(12):1433-45.
14. Yan XB, Wang SS, Hou HL, et al. Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia. Behav Brain Res. 2007 Feb 27;177(2):282-9.
15. Hashimoto R, Fujimaki K, Jeong MR, et al. [Neuroprotective actions of lithium]. Seishin Shinkeigaku Zasshi. 2003;105(1):81-6.
16. Williams LS, Ghose SS, Swindle RW. Depression and other mental health diagnoses increase mortality risk after ischemic stroke. Am J Psychiatry. 2004 Jun;161(6):1090-5.
17. Nonaka S, Chuang DM. Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport. 1998 Jun 22;9(9):2081-4.
18. Boyko M, Nassar A, Kaplanski J, et al. Effects of Acute Lithium Treatment on Brain Levels of Inflammatory Mediators in Poststroke Rats. Biomed Res Int. 2015;2015:916234.
19. Fan M, Jin W, Zhao H, et al. Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res. 2015 Sep 15;291:399-406.
20. Yan XB, Hou HL, Wu LM, et al. Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. Neuropharmacology. 2007 Sep;53(4):487-95.
21. Lan CC, Liu CC, Lin CH, et al. A reduced risk of stroke with lithium exposure in bipolar disorder: a population-based retrospective cohort study. Bipolar Disord. 2015 Nov;17(7):705-14.
22. Juan WS, Huang SY, Chang CC, et al. Melatonin improves neuroplasticity by upregulating the growth-associated protein-43 (GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period. J Pineal Res. 2014 Mar;56(2):213-23.
23. Su F, Xu W. Enhancing Brain Plasticity to Promote Stroke Recovery [Review]. Frontiers in Neurology. 2020 2020-October-30;11.
24. Schloesser RJ, Huang J, Klein PS, et al. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 2008 Jan;33(1):110-33.
25. Bailey JA, Lahiri DK. Neuronal differentiation is accompanied by increased levels of SNAP-25 protein in fetal rat primary cortical neurons: implications in neuronal plasticity and Alzheimer's disease. Ann N Y Acad Sci. 2006 Nov;1086:54 65.
26. Buffo A, Holtmaat AJ, Savio T, et al. Targeted overexpression of the neurite growth-associated protein B-50/GAP-43 in cerebellar Purkinje cells induces sprouting after axotomy but not axon regeneration into growth-permissive transplants. J Neurosci. 1997 Nov 15;17(22):8778-91.
27. Sun HS, Doucette TA, Liu Y, et al. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke. 2008 Sep;39(9):2544-53.
28. Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci. 2007 Jun;10(6):702-711.
29. Fournier AE, Beer J, Arregui CO, et al. Brain-derived neurotrophic factor modulates GAP-43 but not t alpha 1 expression in injured retinal ganglion cells of adult rats. Journal of Neuroscience Research. 1997 Mar 15;47(6):561-572.
30. Ding Q, Ying Z, Gómez-Pinilla F. Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience. 2011 Sep 29;192:773-80.
31. Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010 Apr;70(5):304-22.
32. Gray JD, McEwen BS. Lithium's role in neural plasticity and its implications for mood disorders. Acta Psychiatr Scand. 2013 Nov;128(5):347-61.
33. Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry. 2021 Jul 5;11(1):366.
34. Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: Roles of glycogen synthase kinase-3 inhibition. Journal of Neuroscience. 2008 Mar 5;28(10):2576-2588.
35. Gorski JA, Zeiler SR, Tamowski S, et al. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci. 2003 Jul 30;23(17):6856-65.
36. Angelucci F, Aloe L, Jiménez-Vasquez P, et al. Lithium treatment alters brain concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat model of depression. Int J Neuropsychopharmacol. 2003 Sep;6(3):225-31.
37. Grande I, Fries GR, Kunz M, et al. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig. 2010 Dec;7(4):243-50.
38. Sun YR, Herrmann N, Scott CJM, et al. Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J Affect Disord. 2018 Jan 1;225:599-606.
39. Mohammadianinejad SE, Majdinasab N, Sajedi SA, et al. The effect of lithium in post-stroke motor recovery: a double-blind, placebo-controlled, randomized clinical trial. Clin Neuropharmacol. 2014 May-Jun;37(3):73-8.
40. Tai SH, Huang SY, Chao LC, et al. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol Res. 2022 Mar 29:1-9.
41. Tai S-H, Chao L-C, Huang T-Y, et al. Short-term lithium treatment protects the
brain against ischemia–reperfusion injury by enhancing the neuroplasticity of
cortical neurons. Neurological Research. 2021 Feb;44(2):128-138.
42. Huang SY, Chang CH, Hung HY, et al. Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats. Neurol Res. 2018 Feb;40(2):130-138.
43. Chen TY, Tai SH, Lee EJ, et al. Cinnamophilin offers prolonged neuroprotection against gray and white matter damage and improves functional and electrophysiological outcomes after transient focal cerebral ischemia. Crit Care Med. 2011 May;39(5):1130-7.
44. Lee EJ, Lee MY, Chang GL, et al. Delayed treatment with magnesium: reduction of brain infarction and improvement of electrophysiological recovery following transient focal cerebral ischemia in rats. J Neurosurg. 2005 Jun;102(6):1085-93.
45. Chen HY, Hung YC, Chen TY, et al. Melatonin improves presynaptic protein, SNAP-25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res. 2009 Oct;47(3):260-70.
46. Lee MY, Kuan YH, Chen HY, et al. Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res. 2007 Apr;42(3):297-309.
47. Lee EJ, Wu TS, Lee MY, et al. Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res. 2004 Jan;36(1):33-42.
48. Clark WM, Rinker LG, Lessov NS, et al. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke. 2000 Jul;31(7):1715-20.
49. Glaser EM, Van der Loos H. Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi-Nissl stain. J Neurosci Methods. 1981 Aug;4(2):117-25.
50. Sakatani K, Iizuka H, Young W. Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke. 1990 Jan;21(1):124-32.
51. Tai SH, Hung YC, Lee EJ, et al. Melatonin protects against transient focal cerebral ischemia in both reproductively active and estrogen-deficient female rats: the impact of circulating estrogen on its hormetic dose-response. J Pineal Res. 2011 Apr;50(3):292-303.
52. Allen LM, Hasso AN, Handwerker J, et al. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics. 2012 Sep-Oct;32(5):1285-97; discussion 1297-9.
53. Whishaw IQ, O'Connor WT, Dunnett SB. The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain. 1986 Oct;109 ( Pt 5):805-43.
54. Han R, Gao B, Sheng R, et al. Synergistic effects of prostaglandin E1 and lithium in a rat model of cerebral ischemia. Acta Pharmacol Sin. 2008 Oct;29(10):1141-9.
55. Sheng R, Zhang LS, Han R, et al. Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia. Acta Pharmacol Sin. 2011 Mar;32(3):303-10.
56. Kim YR, van Meer MP, Tejima E, et al. Functional MRI of delayed chronic lithium treatment in rat focal cerebral ischemia. Stroke. 2008 Feb;39(2):439-47.
57. Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci. 2008 Mar 5;28(10):2576-88.
58. Chen PH, Tsai SY, Pan CH, et al. Mood stabilisers and risk of stroke in bipolar disorder. Br J Psychiatry. 2019 Jul;215(1):409-414.
59. Bolay H, Dalkara T. Mechanisms of motor dysfunction after transient MCA occlusion: persistent transmission failure in cortical synapses is a major determinant. Stroke. 1998 Sep;29(9):1988-93; discussion 1994.
60. Taliyan R, Ramagiri S. Delayed neuroprotection against cerebral ischemia reperfusion injury: putative role of BDNF and GSK-3beta. J Recept Signal Transduct Res. 2016 Aug;36(4):402-10.
61. Hung YC, Chen TY, Lee EJ, et al. Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J Pineal Res. 2008 Nov;45(4):459-67.
62. Haupt M, Zechmeister B, Bosche B, et al. Lithium enhances post-stroke blood-brain barrier integrity, activates the MAPK/ERK1/2 pathway and alters immune cell migration in mice. Neuropharmacology. 2020 Dec 15;181:108357.
63. Haupt M, Bahr M, Doeppner TR. Lithium beyond psychiatric indications: the reincarnation of a new old drug. Neural Regen Res. 2021 Dec;16(12):2383-2387.
64. Chen J, Zhang C, Jiang H, et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab. 2005 Feb;25(2):281-90.
65. Hocquemiller M, Vitry S, Bigou S, et al. GAP43 overexpression and enhanced neurite outgrowth in mucopolysaccharidosis type IIIB cortical neuron cultures. J Neurosci Res. 2010 Jan;88(1):202-13.
66. Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity [Review]. Frontiers in Cellular Neuroscience. 2017 2017-August-31;11(266).