簡易檢索 / 詳目顯示

研究生: 賈力橋
Chia, Li-Chiao
論文名稱: PHD與Chromo結構域之交互作用引導NuA4至DNA雙股斷裂處
Combined interaction of PHD and Chromo domains directs NuA4 to DNA double-strand breaks
指導教授: 廖泓鈞
Liaw, Hung-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 55
中文關鍵詞: 雙股斷裂酵母菌組蛋白修飾
外文關鍵詞: DSB, NuA4, Yng2, Eaf3, PHD, chromo
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對健全的基因體來說,DNA雙股斷裂(DNA double-strand break, DSB)是最危險的傷害。DSB修復失敗可造成基因體之不穩定與癌症形成。從酵母菌(Saccharomyces cerevisiae)至人類,DSB修復之機制極為保守。於酵母菌中,組蛋白修飾複合體NuA4聚集至DSB處以進行組蛋白H2A與H4之乙醯化,此舉被認作為鬆開染色質並使修復蛋白得以進入。NuA4之兩個單元蛋白,Eaf3與Yng2於試管實驗(in vitro)中分別能夠藉由chromo結構域以及PHD (plant homeodomain)結構域與組蛋白H3的第36個離胺酸(lysine)之兩個甲基化 (H3K36me2)以及第4個離胺酸之三個甲基化(H3K4me3)反應。於此研究中,我們發現突變Eaf3之chromo結構域(eaf3-chromo)或Yng2之PHD結構域(yng2-PHD)對於細胞生長及DNA修復皆無顯著影響。然而,結合chromo結構域與PHD結構域兩者之突變(eaf3-chromo yng2-PHD)卻戲劇性地出現對細胞生長及DNA修復方面的缺陷。除此以外,染色質免疫沉澱(chromatin immunoprecipitation, ChIP)實驗透露出大量的組蛋白H2A的第129個絲胺酸(serine)之磷酸化(H2AS129p)、組蛋白H4的第12個離胺酸之乙醯化(H4K12ac)及H3K36me2於DSB處累積。Yng2於DSB處大量累積,表示NuA4有效地聚集至DSB處。相形之下,eaf3-chromo yng2-PHD雙突變株之H4K12ac與H3K36me2戲劇性地下降,並且H2AS129p之活化延長,表示雙突變株損傷了NuA4之聚集與修復效率。組蛋白H3的K4之突變(H3K4R)阻斷此位置甲基化,也造成Yng2與H4K12ac戲劇性地下降,以及H2AS129p之活化延長,表示H3K4R突變也損傷了NuA4之聚集與修復效率。我們的結果顯示DSB能夠引發H2AS129p與H3K36me2於斷裂處的專一性修飾,藉由這些修飾過之組蛋白與NuA4之單元蛋白的交互作用,NuA4複合體方能依次地聚集。這些交互作用存在H2AS129p與Arp4、H3K36me2與chromo結構域以及H3K4me3與PHD結構域之間。這些多重的交互作用對於NuA4在DSB處之聚集,扮演鞏固強化之角色。

    DNA double strand breaks (DSBs) are the most dangerous lesions to the integrity of genome. Failure to repair DSBs properly can lead to genomic instability and cancer. The mechanism of DSB repair is highly conserved from yeast to human. In yeast Saccharomyces cerevisiae, the histone modification complex, NuA4 (functional homolog of Tip60 in human) is recruited to DSBs where it acetylates histone H2A and H4, presumably relaxing the chromatin and allowing the access of repairing proteins. Two subunits of NuA4, Yng2 and Eaf3, can interact with methylated K4 and K36 of histone H3 (H3K4me and H3K36me) by their plant homeodomain (PHD) and chromo domain respectively in vitro. Here, we demonstrated that mutations either in the Yng2 PHD domain (yng2-PHD) or the Eaf3 chromo domain (eaf3-W84A/W88A) have no significant effect on cell growth or DNA repair. However, combined mutations both in the PHD and chromo domain (yng2-PHD eaf3-W84A/W88A) show dramatic defect both in cell growth and DNA damage repair. In addition, the chromatin immunoprecipitation (ChIP) experiments reveal that high level of phospho-S129 of histone H2A (H2AS129p), acetyl-K12 of histone H4 (H4K12ac), H3K4me2, H3K4me3, H3K36me2, and Yng2 are enriched at HO DSB site, suggesting histone H2A-S129p, H3K4me2, H3K4me3, and H3K36me2 are specifically modified at the DSB site and NuA4 is efficiently recruited at the DSB site to acetylate histone H4. By contrast, the eaf3-W84A/W88A yng2-PHD double mutant dramatically reduced the enrichment of H4K12ac at the DSB, suggesting the impairment of NuA4 recruitment. H2A-S129p activation is prolonged at DSB, suggesting the double mutant impairs DSB repair. Our results suggest that the DSB can induce the specific H2AS129p, H3K4me2, H3K4me3, and H3K36me2 modifications at DSB, which in turns recruits NuA4 complex by the multiple interactions between these modified histones and subunits of NuA4. These interactions include H2AS129p-Arp4, H3K36me2-chromo domain and H3K4me3-PHD interactions and these multiple interactions strengthen the recruitment of NuA4 at DSBs.

    Chinese abstract 1 Abstract 3 Acknowlegements 5 Contents 6 List of Figures 8 Abbreviations 10 1. Introduction 11 1.1 The DNA damage response (DDR) at DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. 11 1.2 Histone modification and chromatin remodeling at DSBs. 13 1.3 The regulation of transcription and DNA repair by NuA4. 16 1.4 Aim of this study 16 2. Materials and Methods 18 2.1 Plasmid construction 18 2.2 Yeast strains 19 2.3 Table of strains 21 2.5 Yeast transformation 22 2.6 Yeast DNA extraction 22 2.7 DNA damage sensitivity assay 23 2.8 Growth curve 23 2.9 Chromatin immunoprecipitation (ChIP) 23 3. Results 27 3.1 Neither eaf3 null mutant nor mutations in the chromo domain of Eaf3 displayed sensitivity to DNA damaging agents. 27 3.2 The yng2 null mutant displayed serious growth defect and sensitivity to DNA damaging treatments, but not the mutations in the PHD domain of Yng2. 28 3.3 Combined mutation of eaf3-W84A/W88A and yng2-PHD displayed growth defect and hypersensitive to DSB type DNA damage. 29 3.4 H3K4R mutant was sensitive to DNA damage treatment. 29 3.5 Histones were specifically modified at DSB. 30 3.6 The modification of histones was delayed and decreased in W84/88A PHD mutant. 31 4. Discussion 32 5. References 35 Figures 38

    1. Biswas, D., Takahata, S. & Stillman, D.J. Different genetic functions for the Rpd3(L) and Rpd3(S) complexes suggest competition between NuA4 and Rpd3(S). Mol Cell Biol 28, 4445-58 (2008).
    2. Carrozza, M.J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-92 (2005).
    3. Ciccia, A. & Elledge, S.J. The DNA damage response: making it safe to play with knives. Mol Cell 40, 179-204 (2010).
    4. Downs, J.A., Lowndes, N.F. & Jackson, S.P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001-4 (2000).
    5. Doyon, Y. & Cote, J. The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev 14, 147-54 (2004).
    6. Harper, J.W. & Elledge, S.J. The DNA damage response: ten years after. Mol Cell 28, 739-45 (2007).
    7. Joshi, A.A. & Struhl, K. Eaf3 chromo domain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20, 971-8 (2005).
    8. LACOSTE, N. INTERACTIONS DU COMPLEXE MULTIPROTÉIQUE NuA4 DANS LA DYNAMIQUE CHROMATINIENNE. (2005).
    9. Li, B. et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050-4 (2007).
    10. Liaw, H. and A. J. Lustig. Sir3 C-terminal domain involvement in the initiation and spreading of heterochromatin. Mol Cell Biol 26(20): 7616-7631. (2006).
    11. Lin, J.-Y.. The function of Yng2 in the DNA double-strand break repair. (2013).
    12. Mitchell, L. et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 28, 2244-56 (2008).
    13. Nakada, D., Matsumoto, K. & Sugimoto, K. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17, 1957-62 (2003).
    14. Nakanishi, S. et al. Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J Cell Biol 186, 371-7 (2009).
    15. Reid, J.L., Iyer, V.R., Brown, P.O. & Struhl, K. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6, 1297-307 (2000).
    16. Robert, F. et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 16, 199-209 (2004).
    17. Schwartz, M.F. et al. Rad9 Phosphorylation Sites Couple Rad53 to the Saccharomyces cerevisiae DNA Damage Checkpoint. Molecular Cell 9, 1055-1065 (2002).
    18. Sharma, S. & Raghavan, S.C. Nonhomologous DNA end joining in cell-free extracts. J Nucleic Acids 2010(2010).
    19. Shi, X. et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 96-9 (2006).
    20. Sun, B. et al. Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J Biol Chem 283, 36504-12 (2008).
    21. van Attikum, H., Fritsch, O. & Gasser, S.M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26, 4113-25 (2007).
    22. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542-8 (2003).

    無法下載圖示 校內:2018-10-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE