| 研究生: |
馬米逹 Marvinanda, Wahyu Kusuma |
|---|---|
| 論文名稱: |
交聯型聚醯亞胺/聚二氟乙烯混摻之合成與其於直接甲醇燃料電池質子傳導膜之應用 Synthesis and Proton-Conducting Properties of Cross-Linked Polyimide/PVDF Blending for Direct Methanol Fuel Cell Application |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 質子交換膜 、聚醯亞胺 、聚二氟乙烯 、聚矽氧烷 |
| 外文關鍵詞: | proton exchange membranes, polyimide, poly(vinylidene fluoride), polysiloxane. |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗首先利用AESA-Na與SMA-1000進行加成反應,接著加入 polysiloxane 進行交聯反應,混摻不同比例之聚二氟乙烯,製備出一系列新型的聚醯亞胺/聚二氟乙烯之質子交換膜。聚二氟乙烯因具有優越的化學及物理性質,所以本實驗選用聚二氟乙烯來混摻以SMA-1000為主體的聚醯亞胺,並藉由FTIR, XRD, DSC的測試來探討其相容性;此外混摻聚二氟乙烯會改變聚醯亞胺基材的微相結構,進而改變其質子傳遞通道,藉由Solid state 23Na可觀察薄膜中離子團簇的聚集。此外也探討混摻不同比例之聚二氟乙烯對薄膜特性所造成的影響,隨著聚二氟乙烯含量的增加,甲醇穿透及含水率會隨之降低;在30 oC時,混摻5 wt%聚二氟乙烯之質子交換膜擁有最高的質子傳導度,為5.22 x 10-2 Scm-1,與Nafion-117 相近(5.48 x 10-2 Scm-1)。
A new blend system consisting of an amorphous polyimide (PI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was investigated for proton exchange membranes (PEM). SMA-1000-based Polyimide (PI) was prepared by cross-linking with polysiloxane and grafting AESA-Na as proton carrier through imide linkage. Because of the excellent chemical and physical properties of PVDF, the SMA-1000-based PI was blended with PVDF. And the miscibility behavior of developed PI system and PVDF at various weight ratios was studied by FTIR, XRD and DSC. Furthermore, it was found that the introduction of PVDF into the PI matrix could alter the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. Solid state 23Na NMR displayed all the ionic functionalities aggregate throughout the membrane. The effect of PVDF content on membrane properties was investigated, for example, the methanol permeability and water content of blend membrane decreased with increasing PVDF content. And, it also found that the conductivity of the blend membrane containing 5 wt% PVDF displayed the highest proton conductivity (5.22 x 10-2 Scm-1) at 30oC, which is comparable to the proton conductivity of Nafion-117 (5.48 x 10-2 Scm-1).
1. Devanathan, Ram., “Recent developments in proton exchange membranes for fuel cells”, Energy Environ. Sci., 1, 101-119 (2008).
2. Zalbowitz, M., Thomas, S.,” Fuel Cells: Green Power”, Department of Energy (1999).
3. L. Carrette, K. A. Friendrich and U. Stimming, “Fuel Cells-Fundamentals and Applications”, Fuel Cells, 1, No.1 (2001).
4. Nicholas W. Deluca, Yossef A. Ela Bd., “Polymer Electrolyte Membranes for the Direct Methanol Fuel Cell: A Review”, Journal of polymer Science, Part B, Polymer Physics (2006).
5. Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., McGrath, J. E., “Alternative Polymer Systems for Proton Exchange Membranes (PEMs)“, Chem. Reviews, Vol. 104, No.10 (2004).
6. B. Smitha, S. Sridhar, A. A. Khan., “Solid polymer electrolyte membranes for fuel cell application-a review”, Journal of membrane Science 259, 10-26 (2005).
7. James, L., Andrew D., “Fuel Cell System Explained”, John Wiley, England, (2003).
8. B. Viswanathan, M. Helen., “Is Nafion, the only Choice?’’, Bulletin of the Catalysis Society of India, 6, 50-66, (2007).
9. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C.; Tisack, M. E., “Advanced materials for improved PEMFC performance and life”, J. Power Source, 131, 41-48, (2004).
10. Yang, Z. Y., Rajendran, R.G. Angew., “Copolymerization of Ethylene, tetrafluoroethylene, and an olefin-Containing Fluorosulfonyl Fluoride: Synthesis of High-Proton-Conductive Membranes for Fuel Cell Applications, Chem., 117, 570-573, (2005).
11. Alberti, G. Casciola, M., Massinelli, L. bauer, B., ‘’Polymeric Proton Conducting Membranes for Medium temperatures fuel cells (110-160oC)’’, J. Membrane Sci, 185 (1) : p.73-81, (2001).
12. Caretta, N., Tricoli, V. Picchioni, F., “Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation”, J. Membrane. Sci, 166 (2): p.189-197 (2000).
13. Fu, Y. Z. Manthiram, A., “Synthesis and Characterization of Sulfonated Polysulfone membranes for direct methanol fuel cells. J. Power Source. 157 (1): p.222-225 (2006).
14. Wang, F., Hickner, M., Kim, Y. S., Zawodzinski, T. A., McGrath, J. E., ”Direct Polymerization of Sulfonated poly(arylene ether sulfone) random (statistical) copolymers: Candidates for new proton exchange membranes”, J. Membr. Sci., 197 (1-2), p.231-242 (2002).
15. Miyatake, K. Shouji, E., Yamamoto, K. Tsuchida, E., “Synthesis and Proton Conductivity of Highly Sulfonated Poly(thiophenylene)”, Macromolecules, 30(10): p.2941-2946, (1997).
16. Fang J., Guo, X., Harada, S., Watari, T., Tanaka, K., Kita, H. Okamoto, K., “Novel sulfonated polyimides as polyelectrolytes for fuel cell application, synthesis, proton conductivity, and water stability of polyimides from 4,4’-diaminodiphenyl ether-2,2”-disulfonic acid”, Macromolecules, 35, (24): p.9022-9028 (2002).
17. Nakajima, H., Nomura, S., Sugimoto, T., Nishikawa, S.Honma, I., “High Temperature Proton Conducting Organic/Inorganic Nanohybrids for Polymer Electrolyte Membrane”, J. Electrochem. Soc., 149 (8): p.A953-A959 (2002).
18. Honma, I., Nomura, S. Nakajima, H., “Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane”, J. Membr. Sci, 185 (1): p.83-94 (2001).
19. Nakajima, H. Honma, I., “Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells”, Solid State Ionics, 148 (3-4): p.607-610 (2002).
20. Staiti, P., “Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole”, Mater. Lett., 47 (4-5): p. 241-246 (2001).
21. Staiti, P., Lufrano, F., Arico, A. S., Passalasqua, E. Antonucci, V., “Sulfonated polybenzimidazole membranes-preparation and physico-chemical characterization”, J. Membr. Sci, 188 (1): p.71-78 (2001).
22. Staiti, P. Minutoli, M., “Influence of composition and acid threatment on proton conduction of composite polybenzimidazole membranes”, J. Power Source, 94 (1): p. 9-13 (2001)
23. Amarilla, J. M., Rojas, R. M., Rojo, J. M., Cubillo, M. J., Linares, A. A costa, J. L., “Antimonic acid and sulfonated polyetyrene proton-conducting polymeric composites”, Solid State Ionics, 127 (1-2): p.133-139 (2000).
24. Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C. Sanchez, J. Y., “Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid”, J. Membr. Sci, 185 (1): p.59-71 (2001).
25. Baradie, B., Poinsignon, C., Sanchez. J. Y., Piffard, Y., Vitter, G., Bestaoui, N., Foscallo, D., Denoyelle, A., delabouglise, D. Vaujany, M., “Thermostable ionomeric filled membrane for H2/O2 fuel cell”, J. Power Source, 74 (1): p.8-16 (1998)
26. Mikhailenko, S. D., Zaidi, S. M. J. Kaliaguine, S., “Sulfonated polyether ether ketone based composite polymer electrolyte membranes”. Catal. Today, 67 (1-3): p.225-236 (2001).
27. Nunes, S. P., Ruffmann, B., Rikowski, E., Vetter, S. Richau, K., “Inorganic modification of proton conductive polymer membrane for direct methanol fuel cells. J. Membr. Sci, 203 (1-2): p.215-225 (2002).
28. Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D. Kaliaguine, S., “Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membrn. Sci, 173 (1): p.17-34 (2000).
29. Bonnet, B., Jones, D. J., Roziere, J., Tchicaya, L., Alberti, G., Casciola, M., Massinelli, L., Baner, B., Peraio, A. Ramunni, E., “Hybrid organic-inorganic membranes for a medium temperature fuel cell. J. new Mater. Electrochem. Syst., 3 (2):p. 87-92 (2000).
30. Kreuer, K. D., “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells”, J. Membr. Sci, 185(1): p.29-39 (2001).
31. Zawodzinski, T. A., Neeman, M., Sillerud, L. O., Gottesfeld, S., “Determination of water diffusion-coefficients in perfluorosulfonate ionomeric membranes”, J. Phys. Chem., 95, 6040 (1991).
32. Qian, X., Gu, N., Cheng, Z., Yang, X., Wang, E., Dong, S., “Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte”, Mater. Chem. Phys. 74, 98 (2002).
33. Zawodzinski, T. A. Jr.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S., “Water-uptake by and transport through Nafion 117 membranes”, J. Electrochem. Soc., 140, 1041 (1993).
34. Kordesch, K., Simader, G., “Fuel Cells and Their Applications“, 1 ed., VCH Verlagsgesellschaft mbH: Weinheim, Germany, (1996).
35. Watanabe, M.; Uchida, H.; Seki, Y.; Emori, M., “Self-Humidifying Polymer Electrolyte Membranes for Fuel Cells”, Journal of the Electrochemical Society, 143, 3847 (1996).
36. Neburchilov, V., Martin, J., Wang, H., and Zhang, J., “A review of polymer electrolyte membranes for direct methanol fuel cells”, Journal of Power Sources 169 (2), 221-238 (2007).
37. Flory, PJ. “Statictical Mechanism of Chain Molocules”, Wiley-Interscience, New York (1969).
38. Wang Junhua, Nanwen Li, Zhiming Cui, Suobo Zhang, Wei Xing, “Blends based on sulfonated poly[bis(benzimidazobenzisoquinolinones)] and poly(vinylidene fluoride) for polymer electrolyte membrane fuel cell”, Journal of membrane Science 341, 155-162 (2009).
39. A. mokrini, M. A. Huneault, P. Gerard, “ Partially fluorinated proton exchange membranes based on PVDF-SEBS blends compatibilized with methylmethacrylate block copolymers”, Journal of Membrane Science 283, 74-83 (2006).
40. Y.C. Si, J.C. Lin, H.R. Kunz, J.M. Feton, “Trilayer membranes with a methanolbarrier Layer”, J. Electrochem. Soc. 151, 463–467 (2004).
41. E.P. Taylor, F.A. Landis, K.A. Page, R.B. Moore, “Counterion dependent crystallization kinetics in blends of a perfluorosulfonate ionomer with poly(vinylidene fluoride)”, Polymer 47, 7425–7435 (2006).
42. F.A. Landis, R.B. Moore, “Blends of a perfluorosulfonate ionomer with poly(vinylidene fluoride): effect of counterion type on phase separation and crystal morphology”, Macromolecules 33, 6031–6041 (2000).
43. S. Xue, G. Yin, Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone), Polymer 47, 5044–5049 (2006).
44. H.Y. Jung, J.K. Park, Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinylidene fluoride) for high performance direct methanol fuel cell, Electrochim. Acta 52 7464–7468 (2007).
45. Hideo Horibe, Mitsuru Taniyama, “Poly(vinylidene fluoride) Crystal Structure of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Blend after Annealing”, Journal of The Electrochemical Society, 153 (2) G119-G124 (2006).
46. Gray, F. M. “Solid Polymer Electrolytes: Fundamentals and Technological Application”, VCH, New York (1991).
47. Linford, R. G. “Electrochemical Science and Technology of Polymers-2”, (1990).
48. Nakamura, K., Hatakeyama, T., Hatakeyama, H., “Relationship between hydrogen bonding and bound water in polyhydroxystyrene derivatives”, Polymer, 24, 871 (1983).
49. John A Kreuz, A. L. Endrey, F. P. Gay, C. E. Sroog, “Studies of Thermal Cyclizations of Polyamic acids and tertiary Amine Salts”, Journal of Polymer Science: Part A-1 Vol 4, 2607-2616 (1966).
50. M. L. Bender, Y. L. Chow, F. Chloupek, “Intramolecular catalysis of hydrolytic reactions. II. The hydrolysis of phthalamic acid”, J. Am. Chem. Soc., 80, 5380 (1958).
51. Hyuck Jai Lee, Jongok Won, Hyun Chae Park, Hoosing Lee, Yong Soo Kang, “Effect of poly(amic acid) imidization on solution characteristics and membrane morphology”, Journal of Membrane Science 178, 35-41 (2000).
52. Y. J. Kim, T. E. Glass, G.D. Lyle and J. E. McGrath, “Kinetic and Mechanic Investigations of the Formation of Polyimides under Homogeneous Conditions”, Macromolecules, 26, 1344-1358 (1993).
53. N. P. Kulikova, M. V. Shablygin, L. E. Utevskii, “Spectroscopic method of determining the degree of imidization of polypyromellitimides (1973).
54. M. B. Saeed, Mao-Sheng Zhan, “Effects of monomers structure and imidization degree on mechanical properties and viscoelastic behavior of thermoplastic polyimides film”, European Polymer Journal, 42, 1844-1854 (2006).
55. Ping-Lin Kuo, Wuu-Jyh Liang, Chang-Yu Hsu, Wu-Huei Jheng, “Preparation, characterization, and properties of new crosslinked proton-conducting membranes with polyoxyalkylene moieties”, Polymer 49, 1792-1799 (2008).
56. Yi-Kun Xu, Mao-Sheng Zhan, Kai Wang, “Structure and Properties of Polyimide Films during a Far-Infrared-Induced Imidization Process”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, 2490–2501 (2004).
57. Fyfe, C., “Solid State NMR for Chemists, CFC Press: Guelph, ON (1983).
58. Komoroski, R. E., “High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk”, VCH Publishers: Deerfield Beach, FL (1986).
59. Gerstein, B. Dybowski, C., “Transient Techniques in the NMR of Solids: An introduction to Theory and Practice”, Academic Press: New York (1985).
60. Koenig, J., “Spectroscopy of Polymers”, American Chemistry Society: Washington, DC (1992).
61. Mehring, M., “High Resolution NMR in Solids”, Springer-Verlag: Berlin (1993).
62. Karlsson LE, Wesslen B, Jannasch P., “Water Absorption and Proton Conductivity of Sulfonated Acrylamide Copolymers”, Electrochim Acta ,47, 3269 (2002).
63. Ostrovskii DI, Torell LM, Paronen M, Hietala S, Sundholm F., “Water sorption properties of and the state of water in PVDF-based proton conducting membranes”, Solid State Ionics ,97, 315 (1997).
64. Erdemi H, Bozkurt A, Meyer WH., “PAMPSA–IM based proton conducting polymer electrolytes”, Synth Met, 143, 133, (2004).
65. Ding J, Chung C, Hodlcroft S., Chem Mater, 7, 2231, (2001).
66. Hench, L.L.; West, “The Sol-Gel Process”, J.Chem.Rev, 90, 33, (1990).
67. Urban, M.W.; Salazar. Rojas,E.M., “Ultrasonic PTC modification of poly(vinylidene fluoride) surface and their characterization”, Macromolecules, 21, 372, (1988).
68. Lin et.al., “Compatible Polyvinylidene Fluoride Blends With Polymers Containing Imide Moieties”, United States patent. US005959022A. (1999).
69. Takakubo, M.; Teramura, K.,” Molecular orbital calculations of poly(vinylidene fluoride) and its model compounds”, J. Polym Sci Part A: Polym Chem, 27, 1897, (1989).
70. Horibe, H.; Mitsuru Taniyama., “Poly(vinylidene fluoride) crystal structure of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Blend after Annealing”, Journal of The Electrochemical Society, 153(2) 6119-6124 (2006).
71. I. Honma, O. Hishikawa, T. Sugimoto, S. Nakajima, “A Sol-gel derived organic/inorganic hybrid membrane for intermediate temperature PEFC”, Fuel Cells 2, 52-58, (2002).
72. Lee, C, ; Sundar, S.; Kwon ,J.; Han, H., ”Structure-property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties”, J. Polym Sci part A:Polym Chem, 42, 3612-3620, (2004).
73. Neergat, M.; Friedrich, K.A.; Stimming, U. In Handbook of Fuel Ceels; Vielstich, W., Lamm, A., Eds.; Wiley: Milan, Vol. 4, Chapter 63, (2003).
74. Binsu, V. V., Nagarete, R.K., Shahi, V.K., and Ghosh, P. K., Reactive & Functional polymers 66(12), 1619-1629 (2006).
75. Genies, C., Mercier, R., Sillion, B., Cornet, N., Gebel, G.Pineri, M., “Soluble sulfonated naphtalenic polyimides as materials for proton exchange membranes”, Polymer, 42(2): p.359-373, (2001).
76. Kreur, K.D., “Proton Conductivity: Materials and Applications”, Chem Mater, 8, 610, (1996).
77. A. Higuchi, T.Iiijia, “D.s.c. Investigation of the states of water in poly(vinyl alcohol) membranes”, Polymer 26,1207, (1985).
78. E.Lina, Karlsson, W. Bengt, J.Patric, Electrochim. Acta 47, 3269, (2002).
79. P.K. Samuel, Kenji Sano, Masao Sudoh, Mizoguchi Kensaka, Sep. Purif. Technol. 18, 141, (2000)
80. Ping, Z.H., Nguyen, Q.T., Chen, S. M., Zhou, J. Q., Ding, Y.D., “State of water in different hydrophilic polymers - DSC and FTIR studies”, Polymer 42 (20), 8461-8467 (2001).
81. O’Connell, E. M., Root, T. W., and Cooper, S. L., “Morphological studies of lightly-sulfonated polystyrene using 23Na NMR. 1. Effects of sample composition”, Macromolecules 28 (11), 3995-3999 (1995).
82. O’Connell, E. M., Root, T. W., and Cooper, S. L., “Morphological studies of lightly-sulfonated polystyrene using 23Na NMR. 2. Effects of solution casting”, Macromolecules 28 (11), 3995-3999 (1995).
83. O’Connell, E. M., Root, T. W., and Cooper, S. L., “Morphological studies of lightly-sulfonated polystyrene using 23Na NMR. 3. Effects of humidification and annealing”, Macromolecules 28 (11), 4000-4006 (1995).
84. Phillips, A. K. and Moore, R. B., “Ionic actuators based on novel sulfonated ethylene vinyl alcohol copolymer membranes,” Polymer 46 (18), 7788-7802 (2005).
85. Orler, E. B., Gummaraju, R. V., Calhoun, B.H., and Moore, R.B., “Effect of preferential plasticization on the crystallization of lightly sulfonated syndiotactic polystyrene ionomers”, Macromolecules 32 (4), 1180-1188 (1999).
86. Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, J. E. McGrath, “Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effect on the methanol permeability”, J. Membr. Sci. 243 (2004) 317.
87. Gao Y, Robertson GP, Guiver MD, Jian XG, Mikhailenko SD, Wang KP, et al, “Direct copolymerization of sulfonated poly(pthalazinone arylene ether)s for proton-exchange –membrane materials”, J Polym Sci , Part A: Polym Chem, 41, 2731-42, (2003).
88. Chen NP, hang L, Polymer, 45, 2403-11, (2004).
89. D.S. Kim, Y.S. Kimb, M.D. Guiver, B.S. Pivovar, “High performance nitrile copolymers for proton electrolyte membrane fuel cells”, J.Membr. Sci 321, 199-208, (2008).
90. Miyatake Kenji, Hua Zhou, Takashi Matsuo, Hiroyuki Uchida and Masahiro Watanabe, “Proton conductive polyimide electrolytes containing trifluoromethyl groups: Synthesis, properties and DMFC Performnace”, macromolecules 37, 4961-4966 (2004).
91. T.J.F. Day, U.W. Schmitt, G.A. Voth, “The mechanism of hydrated proton transport in water”, J. Am. Chem. Soc. 122, 12027–12028, (2000).
92. M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, S. Walbran, “Mechanism of proton conductance in polymer electrolyte membranes”, J. Phys. Chem. B 105, 3646–3662, (2001).
93. A.A. Kornyshev, A.M. Kuznetsov, E. Spohr, J. Ulstrup, “Kinetics of proton transport in water”, J. Phys. Chem. B 107, 3351–3366, (2003).
94. E. Spohr, P. Commer, A.A. Kornyshev, “Enhancing proton mobility in polymer electrolyte membranes: lessons from molecular dynamics simulations”, J. Phys. Chem. B 106, 10560–10569, (2002).
95. J.O. Won, H.H. Park, Y.J. Kim, S.W. Choi, H.Y. Ha, I.H. Oh, H.S. Kim, Y.S. Kang, K.J. Ihn, “Fixation of nanosized proton transport channels in membranes”, Macromolecules 36, 3228–3234, (2003).
96. Z. Ogumi, T. Kuroe, Z. Takehara, J. Electrochem., “Gas Permeation in SPE Method”, Soc. 1322, 2601, (1985).
97. Matsuura, T.; Sourirajan, S. “Fundamentals of Reverse Osmosis”, NRCC: Ottawa, (1985).
98. J.Wootthikanokkhan, N. Seeponkai., “Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends”, Journal of Applied Polymer Science, Vol. 102, 5941-5947 (2006).
校內:2015-08-27公開