| 研究生: |
陳照臨 Chen, Chao-Lin |
|---|---|
| 論文名稱: |
體內原位力學刺激對於管狀組織成熟的影響 –
組織工程血管上的啟示 Effects of In Situ Mechanical Stimuli on the Maturation of Tubular tissue - Implications for Tissue-Engineered Blood Vessels |
| 指導教授: |
胡晉嘉
Hu, Jin-Jia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 組織工程血管 、力學測試 、順應性 、爆破壓 、縫線留置張力 |
| 外文關鍵詞: | Tissue-engineered blood vessels, Mechanical test, Compliance, Burst pressure, Suture retention force |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
組織工程血管經過數十年的演進至今, 對於小口徑(<6mm)的需求至今仍然沒有答案。傳統高分子合成之人工血管如PTFE (Polytetrafluoroethylene)、PET(Polyethylene teraphthalate)等材質已廣泛被運用於醫療中, 植入人體使用。但對血管而言, 異物反應(foreign body reaction)以及順應性差異(compliance mismatch)導致合成材質血管在小口徑(<6mm)植入的表現差強人意, 因而導致其運用性的限制。另一方面, 製造組織工程血管的方式主要包括使用可降解支架(biodegradable scaffold)、細胞以及胞外基質ECM(extracellular matrix)在體外做培養 ; 近年來學界搭配生物反應器(bioreactor)以模擬體內環境的方式在體外做細胞培養, 以期能生長出更理想的組織工程血管,並已有令人振奮的結果。本實驗繼承上述前人研究成果, 進一步探討力學刺激對於生物組織的影響, 並且使用客製管狀組織力學測試機台來測量順應性、爆破壓以及縫線留置張力, 期望能為小口徑人工血管帶來新希望。
After decades of efforts, there is still a lack for ideal blood vessel substitute for those internal diameter less than 6mm. Conventional synthetic polymers like PTFE(Polytetrafluoroethylene), PET(Polyethylene teraphthalate) have been popularly applied as medical implantation. But for small blood vessel(<6mm) applications, their functions are still enormously hampered by foreign body reaction and compliance mismatch. On the other side, tissue-engineered blood vessels are made mainly by culturing cells on biodegradable scaffold and ECM(extra-cellular matrix) in vitro, while bioreactor, a device to simulate physical hemodynamic condition in vitro, has gained its popularity in recent researches with promising results. This study is based on aforementioned footsteps and will look into the effect of mechanical stimulation on biological tissues. We use a custom-made mechanical tester to measure the compliance, burst pressure and suture retention force of tubular tissues, aiming to bring a new hope for small caliber tissue-engineered blood vessels.
1. Teebken, O.E. & Haverich, A. Tissue engineering of small diameter vascular grafts. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery 23, 475-485 (2002).
2. Daly, C.D., Campbell, G.R., Walker, P.J. & Campbell, J.H. In vivo engineering of blood vessels. Frontiers in bioscience : a journal and virtual library 9, 1915-1924 (2004).
3. Peirce, E.C., 2nd. Autologous tissue tubes for aortic grafts in dogs. Surgery 33, 648-657 (1953).
4. Eiken, O. Autogenous connective tissue tubes for replacement of small artery defects. A preliminary report of an experimental study in dogs. Acta chirurgica Scandinavica 120, 47-50 (1960).
5. Eiken, O. & Norden, G. Bridging small artery defects in the dog with in situ preformed autologous connective tissue tubes. Acta chirurgica Scandinavica 121, 90-102 (1961).
6. Schilling, J.A., Shurley, H.M., Joel, W., White, B.N. & Bradford, R.H. ABDOMINAL AORTIC GRAFTS: USE OF IN VIVO STRUCTURED AUTOLOGOUS AND HOMOLOGOUS FIBROCOLLAGENOUS TUBES. Annals of surgery 159, 819-828 (1964).
7. Sparks, C.H. Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Annals of surgery 177, 293-300 (1973).
8. Hallin, R.W. Complications with the mandril-grown (Sparks) dacron arterial graft. The American surgeon 41, 550-554 (1975).
9. Hallin, R.W. & Sweetman, W.R. The Sparks' mandril graft. A seven year follow-up of mandril grafts placed by Charles H. Sparks and his associates. American journal of surgery 132, 221-223 (1976).
10. Kretschmer, G., Polterauer, P., Wagner, O. & Piza, F. [Sparks grafts as arterial substitutes in the femoro-popliteal region with a postoperative follow-up of up to 54 months]. Helvetica chirurgica acta 48, 243-250 (1981).
11. Ryan, G.B., et al. Myofibroblasts in an avascular fibrous tissue. Laboratory investigation; a journal of technical methods and pathology 29, 197-206 (1973).
12. Campbell, G.R. & Ryan, G.B. Origin of myofibroblasts in the avascular capsule around free-floating intraperitoneal blood clots. Pathology 15, 253-264 (1983).
13. Campbell, J.H., Efendy, J.L. & Campbell, G.R. Novel vascular graft grown within recipient's own peritoneal cavity. Circulation research 85, 1173-1178 (1999).
14. Nakayama, Y., Ishibashi-Ueda, H. & Takamizawa, K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell transplantation 13, 439-449 (2004).
15. Chue, W.L., et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 39, 859-867 (2004).
16. Vranken, I., De Visscher, G., Lebacq, A., Verbeken, E. & Flameng, W. The recruitment of primitive Lin(-) Sca-1(+), CD34(+), c-kit(+) and CD271(+) cells during the early intraperitoneal foreign body reaction. Biomaterials 29, 797-808 (2008).
17. Le, S.J., et al. Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation; research in biological diversity 79, 232-243 (2010).
18. Mooney, J.E., et al. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. The American journal of pathology 176, 369-380 (2010).
19. Song, L., Wang, L., Shah, P.K., Chaux, A. & Sharifi, B.G. Bioengineered vascular graft grown in the mouse peritoneal cavity. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 52, 994-1002, 1002 e1001-1002 (2010).
20. Bregman, D. & Wolinsky, H. Autogenous vascular replacements induced by a subcutaneous pulsatile system. The Journal of surgical research 16, 624-631 (1974).
21. Leung, D.Y., Glagov, S. & Mathews, M.B. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science (New York, N.Y.) 191, 475-477 (1976).
22. Sumpio, B.E., Banes, A.J., Link, W.G. & Johnson, G., Jr. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Archives of surgery (Chicago, Ill. : 1960) 123, 1233-1236 (1988).
23. Kim, B.S., Nikolovski, J., Bonadio, J. & Mooney, D.J. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature biotechnology 17, 979-983 (1999).
24. Niklason, L.E., et al. Functional arteries grown in vitro. Science (New York, N.Y.) 284, 489-493 (1999).
25. Solan, A., Mitchell, S., Moses, M. & Niklason, L. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue engineering 9, 579-586 (2003).
26. Isenberg, B.C. & Tranquillo, R.T. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Annals of biomedical engineering 31, 937-949 (2003).
27. Huang, H., et al. Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs 8, 110-118 (2005).
28. Huang, H., et al. In vitro maturation of "biotube" vascular grafts induced by a 2-day pulsatile flow loading. Journal of biomedical materials research. Part B, Applied biomaterials 91, 320-328 (2009).
29. Zhang, Z.X., et al. In vitro study of endothelial cells lining vascular grafts grown within the recipient's peritoneal cavity. Tissue engineering. Part A 14, 1109-1120 (2008).
30. Hu, J.-J., Chao, W.-C., Lee, P.-Y. & Huang, C.-H. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. Journal of the Mechanical Behavior of Biomedical Materials.
31. Campbell, G.R., et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. Journal of tissue engineering and regenerative medicine 2, 50-60 (2008).
32. Cao, Y., et al. Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity. Journal of biomedical materials research. Part A 87, 719-727 (2008).
33. Mutsaers, S.E. Mesothelial cells: their structure, function and role in serosal repair. Respirology (Carlton, Vic.) 7, 171-191 (2002).
34. Armentano, R.L., et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. The American journal of physiology 260, H1870-1877 (1991).
35. Dahl, S.L., Rhim, C., Song, Y.C. & Niklason, L.E. Mechanical properties and compositions of tissue engineered and native arteries. Annals of biomedical engineering 35, 348-355 (2007).
36. Konig, G., et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30, 1542-1550 (2009).
37. McAllister, T.N., et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373, 1440-1446 (2009).
38. Inoguchi, H., et al. Mechanical responses of a compliant electrospun poly(l-lactide-co-ε-caprolactone) small-diameter vascular graft. Biomaterials 27, 1470-1478 (2006).
39. Hong, Y., et al. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 30, 2457-2467 (2009).
40. Armentano, R.L., Barra, J.G., Levenson, J., Simon, A. & Pichel, R.H. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circulation research 76, 468-478 (1995).
41. Syedain, Z.H., Weinberg, J.S. & Tranquillo, R.T. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proceedings of the National Academy of Sciences of the United States of America 105, 6537-6542 (2008).
42. Solan, A., Dahl, S.L. & Niklason, L.E. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell transplantation 18, 915-921 (2009).
43. Patel, A., Fine, B., Sandig, M. & Mequanint, K. Elastin biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovascular research 71, 40-49 (2006).
44. Kakisis, J.D., Liapis, C.D., Breuer, C. & Sumpio, B.E. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. Journal of vascular surgery : official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter 41, 349-354 (2005).
校內:2017-08-21公開