簡易檢索 / 詳目顯示

研究生: 鄭富元
Jheng, Fu-Yuan
論文名稱: 氧化鎂系列電阻式記憶體之研究
Fabrication and Investigation of Magnesium Oxide Based Resistive Random-Access Memory
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 136
中文關鍵詞: 電阻式隨機存取記憶體氧化鎂鎵氧化鎂矽雙層電阻式記憶體薄膜密度
外文關鍵詞: RRAM, MgGaxOy, MgSiO3, bi-layer RRAM, film density
相關次數: 點閱:88下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究了具有不同材料組成的抗性隨機存取記憶體(RRAM)元件的性能。第3章重點介紹了基於氧化鎂鎵材料的電阻式記憶體元件,首先探討氧化鎂及氧化鎵在不同濺鍍功率下的表現,可以發現不同比例有著有不同的特性,從單獨氧化鎂或氧化鎵表現出102開關比,經過共同濺鍍後獲得改善具有103的開關比與1.26 V操作電壓;接續我們探討不同限流對於記憶體元件的特性影響,發現加大限流能夠效的改善表現;最後我們探討不同上電極的傳導機制與其特性關係,發現銅具有最低電壓的表現。第4章探討了氧化鎂矽作為電阻式記憶體的新材料,在初始條件下就具有高開關比(104),展示了其在改善元件性能方面的潛力。探討經由不同濺鍍通氧量,氧氧缺變化所造成的特性影響。以及不同主動層密度對導電絲形成的影響,進而改變電性表現,發現密度大的薄膜結構具有較大的開關比(105)與較大的操作電壓(2.72 V)。在第5章中,本研究深入探討了雙層氧化鎂矽電阻式記憶體元件的性能,並研究了密度梯度對其性能的影響。結果表明,雙層薄膜結構中,上層密度高,下層密度低的密度梯度可以達到最高的開關比(106),最大的操作電壓(3.85 V)。

    This study investigates the performance of resistive random access memory (RRAM) devices with different material compositions. Chapter 3 focuses on resistive memory devices based on magnesium gallium oxide (MgGaxOy) materials. Firstly, the performance of magnesium oxide (MgO) and gallium oxide (Ga2O3) at different sputtering powers is explored. It is observed that different ratios exhibit distinct characteristics, with MgO or Ga2O3 individually demonstrating an on/off ratio of 102. However, through co-sputtering, an improved on/off ratio of 103 and a set voltage of 3.19 V are achieved. The influence of different top electrode materials is also investigated, with copper (Cu) top electrode RRAM exhibiting good endurance for 103 cycles and a low set voltage of 1.53 V. Additionally, increasing the compliance current (Icc) from 1 mA to 5 mA enhances the on/off ratio from 102 to 104, with the set voltage ranging from 1.23 V to 1.96 V. Chapter 4 discusses MgSiO3 as a new material for resistive memory devices, showcasing its potential in improving device performance. The effects of different sputtering oxygen flow rates and resulting oxygen vacancy variations are examined. Moreover, the impact of different active layer densities on the formation of conductive filaments and electrical properties is explored. It is found that higher-density films exhibit higher on/off ratios of 105 and larger set voltages of 2.72 V. Lastly, Chapter 5 delves into the performance of bi-layer MgSiO3 RRAM devices and investigates the influence of density gradients on device performance. The results reveal that a density gradient with high top layer density and low bottom layer density achieves the highest on/off ratio of 106 and an acceptable set voltage of 3.85 V.

    Abstract III Acknowledgement V Contents VI Table Captions IX Figure Captions XI Chapter1 Introduction 1 1-1 Introduction to memories 1 1-1-1 Volatile Memories 1 1-1-2 Non-volatile Memories (NVM) 4 1-1-3 Motivation 5 1-2 Introduction to Resistive Switching 6 1-3 The Current Conduction Mechanism 8 1-4 RRAM filamentary model 16 Chapter2 Experimental Equipment and Material Analysis 23 2-1 Introduction to Fabrication Equipment 23 2-1-1 Radio Frequency Magnetron Sputtering System 23 2-1-2 Electron-Gun Evaporation System 25 2-2 Structure and Surface Analysis 27 2-2-1 X-ray Diffraction (XRD) 27 2-2-2 Atomic Force Microscope (AFM) 28 2-2-3 Transmission Electron Microscope (TEM) 29 2-2-4 Scanning Electron Microscope (SEM) 30 2-2-5 Ellipsometry 31 2-3 Elemental Composition Analysis 32 2-3-1 X-ray Photoelectron Spectroscopy (XPS) 32 2-3-2 Energy-Dispersive X-ray Spectroscopy (EDS) 33 Chapter3 Investigation of MgGaxOy RRAM Devices 35 3-1 Fabrication Flow of RRAM Devices 35 3-2 Analysis of fabricated thin film 38 3-3 Investigation of Mg/Ga ratio variance in RRAM 53 3-4 Investigation of Compliance Current in RRAM 71 3-5 Investigation of Different Top Electrodes 75 3-6 Conclusion 86 Chapter4 Investigation of MgSiO3 RRAM Devices 87 4-1 Fabrication Flow of RRAM Devices 88 4-2 Analysis of fabricated thin film 90 4-3 Investigation of O2/Ar variance in RRAM 99 4-4 Investigation of Film Density in RRAM 105 4-5 Conclusion 112 Chapter5 Investigation of Bi-layer MgSiO3 RRAM Devices 114 5-1 Fabrication Flow of RRAM Devices 115 5-2 Comparison of Different Film Density Bi-layer Devices 117 5-3 Bi-layer Devices Compare to Single-layer Devices 125 5-4 Conclusion 126 Chapter6 Conclusions and Future Work 127 6-1 Conclusions 127 6-2 Future Work 128 References 131

    [1] K. Sun, J. Chen, and X. Yan, "The Future of Memristors: Materials Engineering and Neural Networks," ADV FUNCT MATER, vol. 31, no. 8, 2020, doi: 10.1002/adfm.202006773.
    [2] J. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale Res. Lett., Review vol. 9, p. 33, Sep 2014, Art no. 526, doi: 10.1186/1556-276x-9-526.
    [3] Y. Développement. "Embedded and stand-alone NVM: two different futures"https://www.yolegroup.com/press-release/embedded-and-stand-alone-nvm-two-different-futures/ (accessed.
    [4] M. Julliere, " Tunneling between ferromagnetic films," Phys. Lett. A, Article vol. 54, no. 3, pp. 225-226, 1975, doi:10.1016/0375-9601(75)90174-7.
    [5] H. S. P. Wong et al., "Phase Change Memory," Proc. IEEE, Article vol. 98, no. 12, pp. 2201-2227, Dec 2010, doi: 10.1109/jproc.2010.2070050.
    [6] S. W. Fong, C. M. Neumann, and H. S. P. Wong, "Phase-Change Memory-Towards a Storage-Class Memory," IEEE Trans. Electron Devices, Article vol. 64, no. 11, pp. 4374-4385, Nov 2017, doi:10.1109/ted.2017.2746342.
    [7] I. S. Fetahovic, E. C. Dolicanin, D. R. Lazarevic, and B. B. Loncar, " Overview of radiation effects on emerging non-volatile memory technologies," Nucl. Technol. Radiat. Prot., Article vol. 32, no. 4, pp. 381-392, Dec 2017, doi:10.2298/ntrp1704381f.
    [8] S. T. Han, Y. Zhou, and V. A. L. Roy, "Towards the Development of Flexible Non-Volatile Memories," Adv. Mater., Review vol. 25, no. 38, pp. 5425-5449, Oct 2013, doi: 10.1002/adma.201301361.
    [9] R. E. Jones et al., "Non-volatile memories using SrBi2Ta2O9 ferroelectrics," Integr. Ferroelectr, Article; Proceedings Paper vol. 17, no. 1-4, pp. 21-30, 1997, doi: 10.1080/10584589708012978.
    [10] S. Nakata, K. Saito, and M. Shimada, "Non-volatile Al2O3 memory using an Al-rich structure as a charge-storing layer," Electron. Lett., Article vol. 41, no. 12, pp. 721-722, Jun 2005, doi: 10.1049/el:20051419.
    [11] X. M. Wang, W. G. Xie, and J. B. Xu, "Graphene Based Non-Volatile Memory Devices," Adv. Mater., Article vol. 26, no. 31, pp. 5496-5503, Aug 2014, doi: 10.1002/adma.201306041.
    [12] R. Waser, "Resistive non-volatile memory devices (Invited Paper)," Microelectron, Article; Proceedings Paper vol. 86, no. 7-9, pp. 1925-1928, Jul-Sep 2009, doi: 10.1016/j.mee.2009.03.132.
    [13] T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, "Resistance random access memory," Mater. Today, Article vol. 19, no. 5, pp. 254-264, Jun 2016, doi: 10.1016/j.mattod.2015.11.009.
    [14] D. Ielmini, "Resistive switching memories based on metal oxides: mechanisms, reliability and scaling," Semicond. Sci. Technol., Review vol. 31, no. 6, p. 25, Jun 2016, Art no. 063002, doi: 10.1088/0268-1242/31/6/063002.
    [15] D. Ielmini and H. S. P. Wong, "In-memory computing with resistive switching devices," Nat. Electron., Review vol. 1, no. 6, pp. 333-343, Jun 2018, doi: 10.1038/s41928-018-0092-2.
    [16] M. Lanza et al., "Recommended Methods to Study Resistive Switching Devices," ADV ELECTRON MATER, Article vol. 5, no. 1, p. 28, Jan 2019, Art no. 1800143, doi: 10.1002/aelm.201800143.
    [17] T. Shi, R. Wang, Z. H. Wu, Y. Z. Sun, J. J. An, and Q. Liu, "A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications,", Small Struct., Review vol. 2, no. 4, p. 26, Apr 2021, Art no. 2000109, doi: 10.1002/sstr.202000109.
    [18] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," ADV MATER SCI ENG, vol. 2014, pp. 1-18, 2014, doi:10.1155/2014/578168.
    [19] C. P. Kwan et al., "Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates," AIP Advances, vol. 9, no. 5, 2019, doi: 10.1063/1.5087832.
    [20] Y. Z. Zhang, P. Huang, B. Gao, J. F. Kang, and H. Q. Wu, "Oxide-based filamentary RRAM for deep learning,", J. Phys. D-Appl. Phys., Review vol. 54, no. 8, p. 15, Feb 2021, Art no. 083002, doi:10.1088/1361-6463/abc5e7.
    [21] T. Tsuruoka et al., "Redox Reactions at Cu,Ag/Ta2O5Interfaces and the Effects of Ta2O5 Film Density on the Forming Process in Atomic Switch Structures," ADV FUNCT MATER, vol. 25, no. 40, pp. 6374-6381, 2015, doi: 10.1002/adfm.201500853.
    [22] E. Yalon, A. A. Sharma, M. Skowronski, J. A. Bain, D. Ritter, and I. V. Karpov, "Thermometry of Filamentary RRAM Devices," IEEE Trans. Electron Devices, Article vol. 62, no. 9, pp. 2972-2977, Sep 2015, doi:10.1109/ted.2015.2450760.
    [23] R. F. Hu et al., "Investigation of Resistive Switching Mechanisms in Ti/TiOx/Pd-Based RRAM Devices," ADV ELECTRON MATER, Article vol. 8, no. 8, p. 7, Aug 2022, Art no. 2100827, doi: 10.1002/aelm.202100827.
    [24] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application," Nano Lett, vol. 9, no. 4, pp. 1636-43, Apr 2009, doi: 10.1021/nl900006g.
    [25] D. Ielmini, F. Nardi, and S. Balatti, "Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM," IEEE Trans. Electron Devices, Article vol. 59, no. 8, pp. 2049-2056, Aug 2012, doi:10.1109/ted.2012.2199497.
    [26] R. Degraeve et al., "Causes and consequences of the stochastic aspect of filamentary RRAM," Microelectron. Eng., Article; Proceedings Paper vol. 147, pp. 171-175, Nov 2015, doi: 10.1016/j.mee.2015.04.025.
    [27] Z. Chai et al., "Impact of RTN on Pattern Recognition Accuracy of RRAM-Based Synaptic Neural Network," IEEE Electron Device Lett., Article vol. 39, no. 11, pp. 1652-1655, Nov 2018, doi:10.1109/led.2018.2869072.
    [28] V.-M. Airaksinen, "Chapter 15 - Silicon Wafer and Thin Film Measurements," in Handbook of Silicon Based MEMS Materials and Technologies (Second Edition) 2015, pp. 381-390. doi: 10.1016/B978-0-323-29965-7.00015-4.
    [29] R. J. Martin-Palma and A. Lakhtakia, "Vapor-Deposition Techniques" ENG BIOMIMICRY 2013, pp. 383-398, doi:10.1016/B978-0-12-415995-2.00015-5.
    [30] P. M. A. Sherwood, "Carbons and Graphites: Surface Properties of," in ENCY MAT SCI TECHNOL, 2001, pp. 985-995,doi: 10.1016/B0-08-043152-6/00183-2.
    [31] X.-Z. Zhang, S.-J. Gao, Y.-J. Qu, and H.-T. Wang, "Influences of atomic force microscopy probe on the electrical properties of rubrene crystal device," Chinese J. Anal. Chem., vol. 51, no. 4, p. 100235, 2023/04/01/ 2023, doi: 10.1016/j.cjac.2023.100235.
    [32] P. Sciau, "Chapter Two - Transmission Electron Microscopy: Emerging Investigations for Cultural Heritage Materials," in Advances in Imaging and Electron Physics, vol. 198, P. W. Hawkes Ed.: Elsevier, 2016, pp. 43-67. doi: 10.1016/bs.aiep.2016.09.002.
    [33] K. Akhtar, S. A. Khan, and A. M. Asiri, "Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization," in Handbook of Materials Characterization, S. K. Sharma Ed. Cham: Springer International Publishing, 2018, pp. 113-145. doi: 10.1007/978-3-319-92955-2_4
    [34] G. Greczynski and L. Hultman, "A step-by-step guide to perform x-ray photoelectron spectroscopy," J. Appl. Phys., vol. 132, no. 1, 2022, doi:10.1063/5.0086359.
    [35] G. Greczynski and L. Hultman, "X-ray photoelectron spectroscopy: Towards reliable binding energy referencing," Prog. Mater. Sci, vol. 107, p. 100591, 2020/01/01/ 2020, doi: 10.1016/j.pmatsci.2019.100591.
    [36] N. Raval, R. Maheshwari, D. Kalyane, and R. K. Tekade, "Chapter 10 - Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development," in Basic Fundamentals of Drug Delivery, 2019, pp. 369-400. doi:10.1016/B978-0-12-817909-3.00010-8.
    [37] S. Ii, "Nanoscale Chemical Analysis in Various Interfaces with Energy Dispersive X-Ray Spectroscopy and Transmission Electron Microscopy", XRAY SPECTROM , Feb. 01, 2012. doi: 10.5772/31645.
    [38] B.-S. Tsai, Y.-H. Chang, and Y.-C. Chen, "Nanostructured red-emitting MgGa2O4:Eu3+ phosphors," J. Mater. Res, vol. 19, no. 5, pp. 1504-1508, 2004, doi: 10.1557/JMR.2004.0201.
    [39] W. Kim et al., "Forming-free metal-oxide ReRAM by oxygen ion implantation process,"IEDM, 3-7 Dec.2016, pp. 4.4.1-4.4.4, doi:10.1109/IEDM.2016.7838345.
    [40] S. Menzel and J. H. Hur, "Modeling the VCM- and ECM-Type Switching Kinetics" In Resistive Switching (eds D. Ielmini and R. Waser), 2016, pp. 395-436. doi: 10.1002/9783527680870.ch14.
    [41] S. C. Tsai et al., "Structural Analysis and Performance in a Dual-Mechanism Conductive Filament Memristor," ADV ELECTRON MATER, Article vol. 7, no. 10, p. 9, Oct 2021, Art no. 2100605, doi:10.1002/aelm.202100605.
    [42] C. P. Kwan et al., "Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates," Aip Advances, Article vol. 9, no. 5, p. 7, May 2019, Art no. 055018, doi:10.1063/1.5087832.
    [43] E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura, and K. Sasaki, "Optical and electrochromic properties of RF reactively sputtered WO3 films," Solid State Ion., Article; Proceedings Paper vol. 165, no. 1-4, pp. 175-180, Dec 2003, doi: 10.1016/j.ssi.2003.08.030.
    [44] S. Ezhilvalavan and T. Y. Tseng, "Electrical properties of Ta2O5 thin films deposited on Cu," Thin Solid Films, Article vol. 360, no. 1-2, pp. 268-273, Feb 2000, doi: 10.1016/s0040-6090(99)00873-1.
    [45] X. Sun, Z. Liu, and H. Cao, "Effects of film density on electrochromic tungsten oxide thin films deposited by reactive dc-pulsed magnetron sputtering," J. Alloys Compd, vol. 504, pp. S418-S421, 2010, doi:10.1016/j.jallcom.2010.03.155.
    [46] K. Demyk et al., "Low-temperature optical constants of amorphous silicate dust analogues star," Astron. Astrophys., Article vol. 666, p. 24, Oct 2022, Art no. A192, doi: 10.1051/0004-6361/202243815.
    [47] P. K. Sarkar, S. Bhattacharjee, A. Barman, A. Kanjilal, and A. Roy, "Multilevel programming in Cu/NiOy/NiOx/Pt unipolar resistive switching devices," Nanotechnology, Article vol. 27, no. 43, p. 8, Oct 2016, Art no. 435701, doi: 10.1088/0957-4484/27/43/435701.
    [48] C. W. S. Yeh and S. S. Wong, "Compact One-Transistor-N-RRAM Array Architecture for Advanced CMOS Technology," IEEE J Solid-State Circuits, Article; Proceedings Paper vol. 50, no. 5, pp. 1299-1309, May 2015, doi: 10.1109/jssc.2015.2402217.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE