| 研究生: |
郭振展 Kuo, Cheng-Chan |
|---|---|
| 論文名稱: |
液態金屬在噴嘴低長寬比下之霧化特性 Atomization Characteristics of a Linear Atomizer Under Low Aspect Ratio |
| 指導教授: |
王覺寬
Wang, Chueh-Kuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 長寬比 、內混式噴嘴 、霧化 、金屬粉末 |
| 外文關鍵詞: | Internal mixing, melt, Linear Atomizer |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在探討液態金屬在內混式霧化方式下噴嘴出口長寬比較低時之霧化特性。內混式霧化器有別於外混式霧化器在於其霧化氣體能量可以在封閉的空間內有效地傳遞於待霧化之液態金屬,因此可以使用少一個數量級之霧化氣體得到更細小之噴霧。本研究所探討的噴嘴出口長寬比分別為1.0、1.5、2.0及3.0,噴嘴出口面積為6mm2及12mm2,同時探討噴嘴邊角效應對霧化特性之影響。實驗方法為將固態之鉛錫合金(錫63%,鉛37%)經由高溫熔解爐熔成液態金屬,接著透過液態金屬霧化器將液態金屬霧化成液滴並利用液態氮將其冷卻成金屬粉末,最再後利用INSITEC RT-sizer粒徑分析儀量測金屬粉末粒徑。實驗結果顯示,當噴嘴出口長寬比固定時,噴嘴出口面積較大之噴嘴因具有較高之氣液質量比,所以其噴霧特性皆優於出口面積較小者。當液態金屬噴射壓力從2.0X105N/m2增加至5.0X105N/m2時,噴嘴出口面積為6mm2及12mm2時之金屬粉末平均粒徑分別從53.85μm降至34.17μm以及從35.42μm降至23.98μm。當固定氣液壓差,增加液態金屬噴射壓力時,液態金屬流量隨之增加,但霧化氣體之流量則變化不大。當液態金屬噴射壓力從2.0X105N/m2增加到5.0X105N/m2時,金屬粉末平均粒徑皆可減小至0.25~0.46倍之範圍,並提高微細金屬粉末粒徑體積百分比V15-25的比例,至於較粗的金屬粉末粒徑體積百分比V25-45則無明改變。當液態金屬噴射壓力為4.0X105N/m2,氣液壓差從0.3X105N/m2增加到1.2X105N/m2時,金屬粉末平均粒徑隨液壓差之增加而減小至0.33~0.45倍之範圍,金屬粉末粒徑體積百分比V15-25、V25-45等亦隨之增加。研究結果亦顯示,當隨著液態金屬噴射壓力從2.0X105N/m2增加至5.0X105N/m2時,圓角及方角噴嘴之平均粒徑分別從26.30μm降至19.70μm以及從34.93μm降至28.00μm,故圓角噴嘴具有較佳之霧化特性。
This research program mainly investigates the characteristics of atomization of melt under lower aspect ratios of internal mixing atomizer. The aspect ratios of the atomizer are 1.0~3.0 with the cross section area of the orifice 6mm2 and 12mm2. The corner effect of the orifice on the atomization performances is also characterized. The eutectic metal (Sn63%, Pb37%) is firstly melted in the crucible. The melt is then introduced through atomizer and injected into the liquid nitrogen pool. Finally the particle size of the metal powders is measured with RT-sizer. Results show the atomizer with the larger cross section area has better atomization performance of its higher gas-to-melt ratio. The particle size with cross section area 6mm2 and 12mm2 decreases from 53.85μm to 34.17μm and 35.42μm to 23.98μm, respectively, as the melt pressure increases from 2.0X105 N/m2 to 5.0X105 N/m2. Keeping the pressure different between gas and melt, the mass flow rate of melt increases as the injection pressure of melt increases, while the mass flow rate of atomization gas remains constant. It results in a significant reduction of particle size. Hence the percentage of smaller particles V15-25 increases, but the percentage of larger particles V25-45 changes slightly as the injection pressure of the melt increases from 2.0X105 N/m2 to 5.0X105 N/m2. The pressure difference between gas and melt also controls the particles. When injection pressure of the melt remains at 4.0X105 N/m2, the particle size reduces to 33%~45%. The percentage of particles in V15-25 and V25-45 increase as well. Results also show that the particle size associated of round and square corner of the atomizer decreases from 26.30μm to 19.70μm and 34.93μm to 28.00μm, respectively, as the melt pressure increases from 2.0X105 N/m2 to 5.0X105 N/m2. Hence the atomizer with round corner has better performances than the square one.
[1] 伍祖璁、黃錦鐘。粉末冶金。台北市:高立,民國89年。
[2] Orzechowski, Z. Liquid Atomization. WNT, Warsaw, 1976 (in Polish).
[3] Bayvel, L. and Orzechowski, Z. Liquid Atomization. Taylor & Francis, Washington, DC, 1993.
[4] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[5] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[6] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[7] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[8] Fraser, R. P., ”Liquid Fuel Atomization, ” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp.687-701,1957.
[9] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
[10] Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
[11] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
[12] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
[13] German and Randall, M., Powder Metallurgy Science. Metal Powder Industries Federation, Princeton, N.J., 1994.
[14] Nukiyama, S. and Tanasawa, Y., "Experiments on Atomization of Liquids in an Airstream," Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
[15] Gretzinger, J. and Marshall, W.R. Jr., "Characteristics of Pneumatic Atomization," AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
[16] Kim, K.Y., and Marshall, W.R. Jr., "Drop-Size Distributions from Pneumatic Atomizers," AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
[17] Tate, R.W., "Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers," Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
[18] Rizkalla, A. A. and Lefebvre A.H., "Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
[19] Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
[20] Rizk, N. K. and Lefebvre, A. H., ”Influence of Atomizer DesignFeature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
[21] Beck, J., Lefebvre, A. H. and Koblish, T., ”Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
[22] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[23] Beck, J. E. and Lefebvre A. H., "Airblast Atomization at Conditions of Low Air Velocity," J. Propulsion, Vol. 7, NO.2, March-April, 1991.
[24] Aligner, M. and Wittig, S., "Swirl and Counter Swirl Effects in Prefilming Airblast Atomization", Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
[25] 許耀仁。氣衝式平面噴嘴液膜霧化特性之研究。 國立成功大學航太所碩士論文, 1993。
[26] Sattelmayer, T. and Witting, S., ”Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
[27] Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[28] Press, C., Gupta, A.K. and Semerjian, H.G., "Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, "HTD-vol.104, pp.111-119, 1988.
[29] Kevin, S. Chen and Lefebvre, A. H., "Spray Cone Angle of Effervescent Atomizers," Atomization and Sprays, vol. 4, pp.291-301, 1994.
[30] 楊坤和。研究型氣助式噴嘴之噴霧特性研究。 國立成功大學航太所碩士論文,1992。
[31] 徐明生。雙流體式平面噴嘴霧化特性之研究。 國立成功大學航太所碩士論文,1995。
[32] 王承光。氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究。國立成功大學航太所碩士論文,1996。
[33] Mates, S. P., and Settles, G. S., "High-Speed Imaging of Liquid Metal Atomization by Two Different Close-Coupled Gas Atomization Nozzles," presented at the 1996 World Congress on Powder Metallurgy and Particulate Materials, Washington DC,June16-21, 1996.
[34] Anderson, I. E., and Terpstra, R. L., “Progress toward gas atomization processing with increased uniformity and control,” Materials Science and Engineering:A, Vol.326, Issue 1, pp. 101-109, Mar. 15, 2002.
[35] 康煜昌。平面型液態金屬霧化器之霧化特性研究。 國立成功大學航太所碩士論文,1998。
[36] 楊舒然。強制式液態金屬霧化器之控制參數研究。 國立成功大學航太所碩士論文,1999。
[37] 楊哲睿。液態金屬在噴嘴不同長寬比下之霧化特性。 國立成功大學航太所碩士論文,2002。
[38] Sedat Őzbilen, “Influence of atomizing gas on particle shape of Al and Mg powder,” Powder Technology., Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
[39] P rez, P.A., Gonzalez, J. E., and S nchez, R., ”Characterization of the Deposition Process of Spray Forming in Linear Atomizer”, Iclass2000, Eighth International Conference on Liquid Atomization & Spray Systems, Pasadena, CA, USA, pp.23, July, 2000.
[40] Djuric, Z. and Grant, P., ”Modeling of Deposit Shape During Metal Spraying: the Influence of Splashing and Re-Deposition”, Iclass2000, Eighth International Conference on Liquid Atomization & Spray Systems, Pasadena, CA, USA, pp.25, July, 2000.
[41] Cooper, K.P., ”Advances in the Study of Liquid Metal Atomization and Powder Formation”, Iclass2000, Eighth International Conference on Liquid Atomization & Spray Systems, Pasadena, CA, USA, pp.43, July, 2000.
[42] Steven P. Mates, and Gary S. Settles, “A Study of the Twin Fluid Atomization of Liquid Metal Atomization and Powder Formation”, Iclass2000, Eighth International Conference on Liquid Atomization & Spray Systems, Pasadena, CA, USA, pp.44, July, 2000.
[43] Wang, M. R., Lin, T. C., Yang, C. J., Kuo, Z. Z., and Sheu, M. S., “Effects of Operating Conditions on Molten Metal Atomization in a Linear Internal Mixing Atomizer”, Iclass-Asia2002, Seventh International Conference on Liquid Atomization & Spray Systems, Tainan, Taiwan, pp.237-242, Nov., 2002.
[44] 王覺寬,康煜昌,徐明生,楊舒然,”氣助式平面型液態金屬霧化器特性研究,” 40th Conference on Aero. and Astro. Of ROC, Taichung, Taiwan, ROC, Dec, 1998
[45] 金屬粉末市場應用專題研究,工業技術研究院,1994
[46] 王覺寬、楊舒然、劉玉龍、徐明生,”強制式液態金屬霧化器在噴覆成型之應用”,1999航太學會/燃燒學會/民航學會學術聯合會議,桃園,pp.605-612, Taiwan,ROC, Dec,1999,
[47] 王覺寬、林天柱、楊哲睿、徐明生,”噴嘴出口長寬比對平面型液態金屬霧化器霧化品質之影響”,第十三屆燃燒學會,台北,Taiwan,ROC, pp.97, Mar. 3,2003,.