| 研究生: |
廖昇佑 Liao, Sheng-You |
|---|---|
| 論文名稱: |
探討轉譯後修飾作用對致癌鋅手指轉錄因子ZNF322A之調控機制 Characterization of regulatory mechanism of oncogenic zinc finger transcription factor ZNF322A by post-translational modification |
| 指導教授: |
王憶卿
Wang, Yi-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 肺癌 、ZNF322A 、CK1δ 、GSK3β 、FBXW7α 、AKT 、磷酸化 、泛素化 、蛋白質降解 、轉錄活性 |
| 外文關鍵詞: | lung cancer, ZNF322A, CK1δ, GSK3β, FBXW7α, AKT, phosphorylation, ubiquitination, protein degradation, transcriptional activity |
| 相關次數: | 點閱:163 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景及目的: ZNF322A 為致癌轉錄調控因子,大約有70%的肺癌病人具有ZNF322A 過度表現及不良的預後。本實驗室先前利用細胞及動物模式證實 ZNF322A 能夠負向調控p53及正向調控adducin 1及cyclin D1的基因表現進而促進腫瘤生長及轉移侵襲能力。然而,目前對於ZNF322A 蛋白質過度表現及轉錄活性之調控機制仍不清楚。本篇研究主要探討蛋白質轉譯後修飾作用對於ZNF322A 蛋白質穩定度及轉錄活性之作用機制,並進一步研究其所調控之訊息傳遞路徑。
研究結果: 本研究先經由整合蛋白質體學及蛋白質磷酸化資料庫分析,發現許多ZNF322A 磷酸化位點,經由分析軟體預測 GSK3β及AKT可能為ZNF322A蛋白質激酶。進一步以試管內激酶反應 (in vitro kinase assay) 及細胞泛素化分析 (cell-based ubiquitination assay),我們發現CK1δ/GSK3β/FBXW7α訊息路徑能夠促進ZNF322A致癌蛋白降解。CK1δ及GSK3β能夠分別依續在ZNF322A Ser-396 及 Ser-391進行磷酸化,磷酸化態ZNF322A能夠受到FBXW7α泛素E3連結酶辨認,進而促進ZNF322A 蛋白降解。細胞及動物實驗確認FBXW7α過度表現促進ZNF322A蛋白降解進而抑制ZNF322A轉錄活性及ZNF322A所誘導之細胞生長的轉移能力。進一步,經由臨床檢體分析發現肺癌病人過度表達ZNF322A與FBXW7α 低表達或CK1δ/GSK3β之磷酸化作用之缺陷相關且病人具有較差的預後;此外,多變項Cox迴歸分析顯示,過度表達ZNF322A與低表達FBXW7α之組合可作為肺癌病人的死亡危險及預後指標。除此之外,我們也發現AKT能夠磷酸化ZNF322A進而促進ZNF322A 蛋白質穩定度及轉錄活性。AKT 調控ZNF322A Thr-262位點磷酸化,增加ZNF322A 蛋白穩定度進而促進其轉錄活性;此外,ZNF322A Thr-150、Ser-24及Thr-234受到AKT磷酸化後能夠增加ZNF322A結合DNA之親和力進而促進ZNF322A轉錄活性及正向調控adducin 1之基因表現。以上研究結果顯示AKT為ZNF322A 的正向調節者促進ZNF322A蛋白活性。
研究結論: 本研究提供了新穎的作用機制揭示CK1δ/GSK3β/FBXW7α訊息路徑調控ZNF322A致癌蛋白之降解作用;此外,本研究發現AKT能夠增加ZNF322A 致癌蛋白穩定度並促進其轉錄活性。我們預期透過標靶藥物促進CK1δ/GSK3β/FBXW7α誘導ZNF322A蛋白降解或抑制AKT訊息路徑可作為肺癌治療之新策略。
Background and Study purpose: Overexpression of oncogenic transcription factor ZNF322A is found in about 70% lung cancer patients with poor prognosis. We previous demonstrated that ZNF332A negatively regulates p53 expression and positively regulates expression of adducin 1 and cyclin D1 thus promotes lung cancer growth and metastasis. However, the regulatory mechanisms of ZNF322A overexpression and transcriptional activity remain poorly understood. Therefore, this study aims to investigate the post-translational modifications on ZNF322A protein stability control and transcriptional activity associated with its oncogenic effects in lung cancer.
Results: We identified several ZNF322A phosphorylation sites by integrating our proteomic analysis and online database data. GSK3β and AKT are predicted to be the putative protein kinases of ZNF322A. We further confirmed that CK1δ/GSK3β/FBXW7α signaling axis promoted protein degradation of ZNF322A oncoprotein using in vitro kinase assay and cell-based ubiquitination assay. CK1δ and GSK3β sequentially phosphorylated ZNF322A at Ser-396 and then Ser-391, the doubly phosphorylated ZNF322A protein were recognized by ubiquitin ligase FBXW7α leading to ZNF322A protein destruction. Overexpression of FBXW7α induced ZNF322A protein degradation, thereby blocked ZNF322A transcription activity and suppressed ZNF322A-induced tumor growth and metastasis in vitro and in vivo. Clinically, overexpression of ZNF322A correlated with low FBXW7α or defective CK1δ/GSK3β-mediated phosphorylation in lung cancer patients with poor prognosis. Multivariate Cox regression analysis indicated that patients with ZNF322A-high/FBXW7-low expression profile could be used as an independent factor to predict the clinical outcome in lung cancer patients. In addition, we identified that AKT phosphorylated ZNF322A thus promoted ZNF322A protein stability and transcriptional activity. AKT-mediated ZNF322A phosphorylation at Thr-262 enhanced ZNF322A protein stability thus promoted ZNF322A transcriptional activity. Moreover, ZNF322A Thr-150, Ser-224 and Thr-234 phosphorylation by AKT promoted ZNF322A transcriptional activity through increasing chromatin DNA binding affinity of ZNF322A thereby up-regulated adducin 1 mRNA expression. These results indicated that AKT served as the positive regulator of ZNF322A via promoting ZNF322A protein stability and transcriptional activity.
Conclusion: Our studies provide the novel mechanism of CK1δ/GSK3β/FBXW7α signaling axis in regulation of ZNF322A protein degradation. Moreover, AKT positively regulates ZNF322A oncoprotein protein stability and transcriptional activity. We propose that therapeutic strategies targeting ZNF322A oncoprotein for degradation by promoting CK1δ/GSK3β/FBXW7α signaling axis or inhibiting AKT signaling may provide new insight of target therapy for lung cancer patients.
Abildgaard MO, Borre M, Mortensen MM, Ulhøi BP, Tørring N, Wild P, Kristensen H, Mansilla F, Ottosen PD, Dyrskjøt L, Ørntoft TF, Sørensen KD. (2012). Downregulation of zinc finger protein 132 in prostate cancer is associated with aberrant promoter hypermethylation and poor prognosis. Int J Cancer. 130(4):885-95.
Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, Mueller-Holzner E, Corcoran M, Dagnell M, Nejad SZ, Nayer BN, Zali MR, Hansson J, Egyhazi S, Petersson F, Sangfelt P, Nordgren H, Grander D, Reed SI, Widschwendter M, Sangfelt O, Spruck C. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67(19):9006-12.
Balsara BR, Pei J, Mitsuuchi Y, Page R, Klein-Szanto A, Wang H, Unger M, Testa JR. (2004). Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis. 25: 2053-2059.
Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL. (2016). Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal. 9(430):ra56.
Busino L, Millman SE, Scotto L, Kyratsous CA, Basrur V, O'Connor O, Hoffmann A, Elenitoba-Johnson KS, Pagano M. (2012). Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol. 14(4):375-85.
Carpenter RL, Paw I, Dewhirst MW, Lo HW. (2015). Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 34(5): 546–557.
Cheong JK, Virshup DM. (2011). Casein kinase 1: Complexity in the family. Int J Biochem Cell Biol. 43(4):465-9.
Cho JG, Park S, Lim CH, Kim HS, Song SY, Roh TY, Sung JH, Suh W, Ham SJ, Lim KH, Park SG. (2016). ZNF224, Krüppel like zinc finger protein, induces cell growth and apoptosis-resistance by down-regulation of p21 and p53 via miR-663a. Oncotarget. 7(21):31177-90.
Cohen P, and Frame S. (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol. 2(10):769-76.
David O, Jett J, LeBeau H, Dy G, Hughes J, Friedman M, Brody AR. (2004). Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res. 10:6865-71.
Davis RJ, Welcker M, Clurman B. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell 2014; 26: 455-64.
Dempke WC, Suto T, Reck M. (2010). Targeted therapies for non-small cell lung cancer. Lung Cancer. 67(3):257-74.
Doble BW and Woodgett JR. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 116(Pt 7):1175-86.
Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, Li J, Du JX, Wong J. (2014). A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell. 55(4):537-51.
Filtz TM, Vogel WK, Leid M. (2014). Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci. 35(2):76-85.
Gamper AM, Qiao X, Kim J, Zhang L, DeSimone MC, Rathmell WK, Wan Y. (2012). Regulation of KLF4 turnover reveals an unexpected tissue-specific role of pVHL in tumorigenesis. Mol Cell. 45(2):233-43.
Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. (2007). Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci. 32(2):63-70.
Gan W, Dai X, Lunardi A, Li Z, Inuzuka H, Liu P, Varmeh S, Zhang J, Cheng L, Sun Y, Asara JM, Beck AH, Huang J, Pandolfi PP, Wei W. (2015). SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Mol Cell. 59(6):917-30.
Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W. (2009). Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 11(4):397-408.
Geng H, Liu Q, Xue C, David LL, Beer TM, Thomas GV, Dai MS, Qian DZ. (2012). HIF1α protein stability is increased by acetylation at lysine 709. J Biol Chem. 287(42):35496-505.
Giaccia AJ, and KastanMB. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12(19):2973-83.
Gregory MA and Hann SR. (2000). c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol. 20(7):2423-35.
Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell. 26(1):131-43.
Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 4(12):988-1004.
Hergovich A, Lisztwan J, Thoma CR, Wirbelauer C, Barry RE, Krek W. (2006). Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3. Mol Cell Biol. 26(15):5784-96.
Herbst RS, Heymach JV, Lippman SM. (2008). Lung cancer. N Engl J Med. 359: 1367-1380.
Hoeller D, Hecker CM, Dikic I. (2006). Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer. 6(10):776-88.
Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L, Xu J. (2011). Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 71(11):3980-90.
Hsu DS, Wang HJ, Tai SK, Chou CH, Hsieh CH, Chiu PH, Chen NJ, Yang MH. (2014). Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell. 26(4):534-48.
Hu CW, Hsu CL, Wang YC, Ishihama Y, Ku WC, Huang HC, Juan HF. (2015). Temporal phosphoproteome dynamics induced by an ATP synthase inhibitor Citreoviridin. Mol Cell Proteomics. 14: 3284-98.
Huang WC, Chen CC. (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol. 25: 6592-6602.
Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao ZX, Kaelin WG Jr, Harper JW, Wei W. (2010). Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell. 18(2):147-59.
Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, Xiao Y, Christie AL, Aster J, Settleman J, Gygi SP, Kung AL, Look T, Nakayama KI, DePinho RA, Wei W. (2011). SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature.;471(7336):104-9.
Jen J, Lin LL, Chen HT, Liao SY, Lo FY, Tang YA, Su WC, Salgia R, Hsu CL, Huang HC, Juan HF, Wang YC. (2016). Oncoprotein ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and p53 to promote tumor growth and metastasis in lung cancer. Oncogene. 35(18):2357-69.
Jia D, Hasso SM, Chan J, Filingeri D, D'Amore PA, Rice L, Pampo C, Siemann DW, Zurakowski D, Rodig SJ, Moses MA. (2013). Transcriptional repression of VEGF by ZNF24: mechanistic studies and vascular consequences in vivo. Blood. 121(4):707-15.
Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC, Piwnica-Worms H. (2008). GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell. 13(1):36-47.
Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, Wang SP, Nesvizhskii AI, Chen YJ, Hong TM, Yang PC. (2013). GSK3beta controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene. 33(24):3172-82.
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. (2014). The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol. 4:96
Kulikov R, Winter M, Blattner C. (2006). Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J Biol Chem. 281: 28575-28583.
Laity JH, Lee BM, Wright PE. (2001). Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 11(1):39-46.
Langer CJ, Besse B, Gualberto A, Brambilla E, Soria JC. (2010). The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol. 28(36):5311-20.
Lee WP, Lan KH, Li CP, Chao Y, Lin HC, Lee SD. (2016). Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription. Cancer Lett. 375(1):9-19.
Li Y, Wang Y, Zhang C, Yuan W, Wang J, Zhu C, Chen L, Huang W, Zeng W, Wu X, Liu M. (2004). ZNF322, a novel human C2H2 Kruppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways. Biochem Biophys Res Commun. 325(4):1383-92.
Lin Y, Yang Y, Li W, Chen Q, Li J, Pan X, Zhou L, Liu C, Chen C, He J, Cao H, Yao H, Zheng L, Xu X, Xia Z, Ren J, Xiao L, Li L, Shen B, Zhou H, Wang YJ. (2012). Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell. 48: 627-640.
Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 108(6):837-47.
Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 350(21):2129-39.
Ma H, Ng HM, Teh X, Li H, Lee YH, Chong YM, Loh YH, Collins JJ, Feng B, Yang H, Wu Q. (2014). Zfp322a Regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet. 10(2):e1004038.
Ma X, Huang M, Wang Z, Liu B, Zhu Z, Li C. (2016). ZHX1 Inhibits Gastric Cancer Cell Growth through Inducing Cell-Cycle Arrest and Apoptosis. J Cancer. 7(1):60-8.
Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M, Allende CC, Pinna LA, Allende JE. (2003). A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proc Natl Acad Sci U S A. 100:10193-200.
McCarty AS, Kleiger G, Eisenberg D, Smale ST. (2013). Selective dimerization of a C2H2 zinc finger subfamily. Mol Cell. 11(2):459-70.
Nakayama KI and Nakayama K. (2006). Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 6(5):369-81.
Persikov AV, Wetzel JL, Rowland EF, Oakes BL, Xu DJ, Singh M, Noyes MB. (2015).A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res. 43(3):1965-84.
Pontano LL, Aggarwal P, Barbash O, Brown EJ, Bassing CH, Diehl JA (2008). Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability. Molecular and cellular biology 28: 7245-7258.
Ramalingam S, Belani C. (2008). Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 13 Suppl 1:5-13.
Rappsilber J, Mann M, Ishihama Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2: 1896-906.
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. (2012) Cys2His2 zinc finger protein family: classification, functions, and major members. Biochemistry (Mosc). 77(3):217-26.
Sakaguchi K, Saito S, Higashimoto Y, Roy S, Anderson CW, Appella E. (2000). Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem. 275(13):9278-83.
Sant, M., Allemani, C., Santaquilani, M., Knijn, A., Marchesi, F., and Capocaccia, R. (2009). EUROCARE-4. Survival of cancer patients diagnosed in 1995-1999. Results and commentary. Eur J Cancer. 45, 931-991.
Sato N, Kawai T, Sugiyama K, Muromoto R, Imoto S, Sekine Y, Ishida M, Akira S, Matsuda T. (2005). Physical and functional interactions between STAT3 and ZIP kinase. Int Immunol. 17(12):1543-52.
Schaefer T, Wang H, Mir P, Konantz M, Pereboom TC, Paczulla AM, Merz B, Fehm T, Perner S, Rothfuss OC, Kanz L, Schulze-Osthoff K, Lengerke C. (2015). Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget. 6(41):43540-56.
Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH; Eastern Cooperative Oncology Group. (2002). Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 346(2):92-8.
Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC. (2014). A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 9(2):154-62.
Siegel RL, Miller KD, Jemal A. (2016). Cancer statistics, 2016. CA Cancer J Clin. 66(1):7-30.
Skaar JR, Pagan JK, Pagano M. (2013). Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol.14: 369-81.
Skaar JR, Pagan JK, Pagano M. (2014).SCF ubiquitin ligase-targeted therapies.Nat Rev Drug Discov. 13(12):889-903.
Steuer CE, Khuri FR, Ramalingam SS.(2015). The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer. Cancer. 121(8):E1-6.
Steuer CE, Ramalingam SS. (2015).Targeting EGFR in lung cancer: Lessons learned and future perspectives. Mol Aspects Med. 45:67-73.
Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. (2007). Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics. 6: 1103-09.
Tang JM, He QY, Guo RX, Chang XJ. (2006). Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis. Lung Cancer. 51(2):181-91.
Thollet A, Vendrell JA, Payen L, Ghayad SE, Ben Larbi S, Grisard E, Collins C, Villedieu M, Cohen PA. (2010). ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells. Mol Cancer. 9:291.
Uckun FM, Ma H, Zhang J, Ozer Z, Dovat S, Mao C, Ishkhanian R, Goodman P, Qazi S. (2012). Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros. Proc Natl Acad Sci U S A. 109(44):18072-7.
Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. (2009). A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 10(4):252-63.
Vendrell JA, Thollet A, Nguyen NT, Ghayad SE, Vinot S, Bièche I, Grisard E, Josserand V, Coll JL, Roux P, Corbo L, Treilleux I, Rimokh R, Cohen PA. (2012). ZNF217 is a marker of poor prognosis in breast cancer that drives epithelial-mesenchymal transition and invasion. Cancer Res. 72(14):3593-606.
Vivanco I1, Sawyers CL. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2(7):489-501.
Wang R, Wang Y, Liu N, Ren C, Jiang C, Zhang K, Yu S, Chen Y, Tang H, Deng Q, Fu C, Wang Y, Li R, Liu M, Pan W, Wang P. (2013). FBW7 regulates endothelial functions by targeting KLF2 for ubiquitination and degradation. Cell Res. 23(6):803-19.
Wang X and Zhao J. (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene. 26(3):456-61.
Wang Z, Liu P, Inuzuka H, Wei W. (2014). Roles of F-box proteins in cancer. Nat Rev Cancer.14: 233-47.
Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8(1):25-33.
Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A. 101(24):9085-90.
Welcker M, and Clurman BE. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 8(2):83-93.
Werden SJ, Sphyris N, Sarkar TR, Paranjape AN, LaBaff AM, Taube JH, Hollier BG, Ramirez-Peña EQ, Soundararajan R, den Hollander P, Powell E, Echeverria GV, Miura N, Chang JT, Piwnica-Worms H, Rosen JM, Mani SA. (2016). Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene. 35(46):5977-5988.
Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, Belmont LD, Kaminker JS, O'Rourke KM, Pujara K, Kohli PB, Johnson AR, Chiu ML, Lill JR, Jackson PK, Fairbrother WJ, Seshagiri S, Ludlam MJ, Leong KG, Dueber EC, Maecker H, Huang DC, Dixit VM. (2011). Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471: 110-4.
Wolfe SA, Nekludova L, Pabo CO. (2000). DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 29:183-212.
Xu C, Kim NG, Gumbiner BM. (2009). Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle. 8(24):4032-9.
Xu Y, Lee SH, Kim HS, Kim NH, Piao S, Park SH, Jung YS, Yook JI, Park BJ, Ha NC. (2010). Role of CK1 in GSK3beta-mediated phosphorylation and degradation of snail. Oncogene. 29(21):3124-33.
Yip PY, Cooper WA, Kohonen-Corish MR, Lin BP, McCaughan BC, Boyer MJ, Kench JG, Horvath LG. (2014). Phosphorylated Akt expression is a prognostic marker in early-stage non-small cell lung cancer. J Clin Pathol. 67(4):333-40.
Yokobori T, Yokoyama Y, Mogi A, Endoh H, Altan B, Kosaka T, Yamaki E, Yajima T, Tomizawa K, Azuma Y, Onozato R, Miyazaki T, Tanaka S, Kuwano H. (2014). FBXW7 mediates chemotherapeutic sensitivity and prognosis in NSCLCs. Mol Cancer Res. 12(1):32-7.
Yu J, Liang QY, Wang J, Cheng Y, Wang S, Poon TC, Go MY, Tao Q, Chang Z, Sung JJ. (2013a). Zinc-finger protein 331, a novel putative tumor suppressor, suppresses growth and invasiveness of gastric cancer. Oncogene. 32(3):307-17.
Yu HG, Wei W, Xia LH, Han WL, Zhao P, Wu SJ, Li WD, Chen W.. (2013b). FBW7 upregulation enhances cisplatin cytotoxicity in non- small cell lung cancer cells. Asian Pac J Cancer Prev. 14(11):6321-6.
Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. (2010a). A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24(1):72-85.
Zhao D, Zheng HQ, Zhou Z, Chen C. (2010b). The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 70(11):4728-38.
Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, Ren G, Zhou T, Storz P, Wang HY, Kang Y. (2014). PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell. 26(3):358-73.
Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 6(10):931-40.
Zhou H, Liu Y, Zhu R, Ding F, Wan Y, Li Y, Liu Z. (2017). FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation. Oncogene. doi: 10.1038/onc.2016.479. [Epub ahead of print]