| 研究生: |
楊智凱 Yang, Chih-Kai |
|---|---|
| 論文名稱: |
探討C端區域在馬來腹蛇蛇毒蛋白中對於整合蛋白辨識所扮演的角色 The Role of C-terminal Region of Rhodostomin in the Recognition of Integrins |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 馬來蝮蛇蛇毒蛋白 、C端區域 、選擇性 、整合蛋白 、去整合蛋白 |
| 外文關鍵詞: | Rhodostomin, C-terminal region, selectivity, integrin, disintegrin |
| 相關次數: | 點閱:147 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白是由α和β兩個異質次單元所構成的穿膜蛋白,會調控細胞跟細胞以及細胞跟胞外間質之間的交互作用。其被發現參與在非常多生理反應中,像是血管新生、血栓、發炎以及骨質疏鬆等。因此,整合蛋白被視為具有潛力的治療標靶。去整合蛋白為含有RGD/KGD motif的蛇毒蛋白或生肽鏈的總稱,其對整合蛋白有高度的親和性而被視為有潛力的拮抗劑。而在過去的研究中發現,去整合蛋白的RGD motif附近區域以及C端區域對於辨識整合蛋白的活性及選擇性扮演著重要的角色。因此在本篇研究中,我們利用馬來蝮蛇毒液粹取出的蛇毒蛋白Rhodostomin(Rho)做為模式蛋白探討去整合蛋白C端序列對於整合蛋白的辨識所扮演的角色。Rho為去整合蛋白,來源是馬來蝮蛇,含有六段雙硫鍵,且具有一個PRGDMP motif以及一個PRYH的C端區域。而在我的研究中,主要利用三種策略分別探討C端的重要性:(1)利用wild type的Rho對其C端區域PRYH分別進行alanine scanning的分析。(2)利用對αIIbβ3低親和力的突變株39KKARTICARGRGDNP,將其C端區域以-65PRWNDL, -65PRNRFH, -65PRNPFHA, -65PRNPWNG, -65PRNGLYG, -65PGLYG, -65PGLY and -65PGYH 這些C端保守序列進行置換。(3)利用 39KKARTICARGRGDNP-65PXLYG以不同性質的胺基酸P、Y、R、K、D和E進行置換。首先,我成功的利用P. pastoris系統表現並純化出18個不同的突變蛋白。在第一個策略的細胞黏著實驗中發現,P65A、R66A和Y67A分別對α5β1、αIIbβ3和αvβ6的抑制能力有2.4、5.5和3.3倍的下降。另外,在39KKARTICARGRGDNP-65PXLYG的細胞黏著實驗中發現,R66G、R66P、R66Y、R66D及R66E對αIIbβ3的細胞黏著實驗中,有2~16.4倍的抑制能力的下降,而R66K則保留了對於αIIbβ3的抑制能力。由此可知,在第66位點對於αIIbβ3辨識上,帶正電的胺基酸會有較大的親和力,而帶負電的胺基酸則會降低親和力。而由結果也指出,R66對於C端區域在辨識整合蛋白αIIbβ3上扮演關鍵的角色。而在我的研究中也成功地設計出對於αvβ3及α5β1具有專一性的突變株39KKARTICARGRGDNP-65PDLYG,其對於αvβ3, α5β1, αvβ5, αvβ6, and αIIbβ3的IC50值分別為6.6, 15.4, 833.7, 1996.2, and > 450958.0 nM (12%)。將可作為對αvβ3、αvβ5、αvβ6和α5β1設計拮抗劑,作為設計未來設計藥物的基礎。
Integrin are α/β heterodimeric transmembrane proteins that mediate cell to cell and cell to extracellular matrix interactions. They are involved in many biological processes and serve as important therapeutic targets. Disintegrins are a family of snake venom proteins containing an Arg- Gly-Asp (RGD) motif and have high affinity to integrins. It has been shown that the RGD loop and C-terminal region of disintegrins are important for their activity and selectivity. Rhodostomin (Rho) is a snake venom protein isolated from Calloselasma rhodostoma and contains 68 amino acid residues with a 48PRGDMP motif and 65PRYH C-terminal tail. In this study I used Rho as the protein scaffold to study the effect of C-terminal region on their integrin binding affinities and selectivity. I have successfully expressed three types of Rho C-terminal mutants. The cell adhesion analysis and alanine scanning of 65PRYH region of Rho showed that the activities of P65A, R66A, and Y67A mutants had 2.4-, 5.5-, and 3.3-fold decreases in inhibiting integrins α5β1, αIIbβ3, and αvβ6. The analysis of the 39KKARTICARGRGDNP-65PXLYG mutants also showed that the R66G, R66P, R66Y, R66D and R66E mutants exhibited 2.0-16.4-fold decreases in inhibiting integrin αIIbβ3; however, the R66K mutant retained similar activity in inhibiting integrin αIIbβ3. I also found that 39KKARTICARGRGDNP-65PDLYG mutant was integrins αvβ3 and α5β1-specific disintegrin. These findings showed that C-terminal region of Rho is important for the recognition of integrins, and integrin αIIbβ3 preferred positively charged R and K residues but not negatively charged D and E residues at the 66 position of Rho.
Avraamides, C.J., Garmy-Susini, B., and Varner, J.A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature reviews Cancer 8, 604-617.
Bilgrami, S., Tomar, S., Yadav, S., Kaur, P., Kumar, J., Jabeen, T., Sharma, S., and Singh, T.P. (2004). Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution. Journal of molecular biology 341, 829-837.
Calvete, J.J., Jurgens, M., Marcinkiewicz, C., Romero, A., Schrader, M., and Niewiarowski, S. (2000a). Disulphide-bond pattern and molecular modelling of the dimeric disintegrin EMF-10, a potent and selective integrin alpha5beta1 antagonist from Eristocophis macmahoni venom. The Biochemical journal 345 Pt 3, 573-581.
Calvete, J.J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., and Sanz, L. (2005). Snake venom disintegrins: evolution of structure and function. Toxicon : official journal of the International Society on Toxinology 45, 1063-1074.
Calvete, J.J., Moreno-Murciano, M.P., Sanz, L., Jurgens, M., Schrader, M., Raida, M., Benjamin, D.C., and Fox, J.W. (2000b). The disulfide bond pattern of catrocollastatin C, a disintegrin-like/cysteine-rich protein isolated from Crotalus atrox venom. Protein science : a publication of the Protein Society 9, 1365-1373.
Costa, P., and Parsons, M. (2010). New insights into the dynamics of cell adhesions. International review of cell and molecular biology 283, 57-91.
Cox, D., Brennan, M., and Moran, N. (2010). Integrins as therapeutic targets: lessons and opportunities. Nature reviews Drug discovery 9, 804-820.
Dennis, M.S., Carter, P., and Lazarus, R.A. (1993). Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins 15, 312-321.
DeSimone, D.W., Stepp, M.A., Patel, R.S., and Hynes, R.O. (1987). The integrin family of cell surface receptors. Biochemical Society transactions 15, 789-791.
Faull, R.J., Du, X., and Ginsberg, M.H. (1994). Receptors on platelets. Methods in enzymology 245, 183-194.
Fujii, Y., Okuda, D., Fujimoto, Z., Horii, K., Morita, T., and Mizuno, H. (2003). Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. Journal of molecular biology 332, 1115-1122.
Goh, K.L., Yang, J.T., and Hynes, R.O. (1997). Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development (Cambridge, England) 124, 4309-4319.
Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., and Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 195, 168-171.
Guo, R.T., Chou, L.J., Chen, Y.C., Chen, C.Y., Pari, K., Jen, C.J., Lo, S.J., Huang, S.L., Lee, C.Y., Chang, T.W., et al. (2001). Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins 43, 499-508.
Hodivala-Dilke, K.M., Reynolds, A.R., and Reynolds, L.E. (2003). Integrins in angiogenesis: multitalented molecules in a balancing act. Cell and tissue research 314, 131-144.
Huang, T.F., Wu, Y.J., and Ouyang, C. (1987). Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochimica et biophysica acta 925, 248-257.
Huang, T.F., Yeh, C.H., and Wu, W.B. (2001). Viper venom components affecting angiogenesis. Haemostasis 31, 192-206.
Humphries, J.D., Byron, A., and Humphries, M.J. (2006). Integrin ligands at a glance. Journal of cell science 119, 3901-3903.
Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell 48, 549-554.
Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.
Koivunen, E., Gay, D.A., and Ruoslahti, E. (1993). Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. The Journal of biological chemistry 268, 20205-20210.
Koivunen, E., Wang, B., and Ruoslahti, E. (1994). Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. The Journal of cell biology 124, 373-380.
Koivunen, E., Wang, B., and Ruoslahti, E. (1995). Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio/technology (Nature Publishing Company) 13, 265-270.
Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638.
Lu, X., Rahman, S., Kakkar, V.V., and Authi, K.S. (1996). Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin. The Journal of biological chemistry 271, 289-294.
Luo, B.H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annual review of immunology 25, 619-647.
Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., and Niewiarowski, S. (1997). Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood 90, 1565-1575.
Marcinkiewicz, C., Weinreb, P.H., Calvete, J.J., Kisiel, D.G., Mousa, S.A., Tuszynski, G.P., and Lobb, R.R. (2003). Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer research 63, 2020-2023.
Maruyama, K., Kawasaki, T., Sakai, Y., Taniuchi, Y., Shimizu, M., Kawashima, H., and Takenaka, T. (1997). Isolation and amino acid sequence of flavostatin, a novel disintegrin from the venom of Trimeresurus flavoviridis. Peptides 18, 73-78.
McLane, M.A., Sanchez, E.E., Wong, A., Paquette-Straub, C., and Perez, J.C. (2004). Disintegrins. Current drug targets Cardiovascular & haematological disorders 4, 327-355.
Monleon, D., Esteve, V., Kovacs, H., Calvete, J.J., and Celda, B. (2005). Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. The Biochemical journal 387, 57-66.
Mousa, S.A., Forsythe, M.S., and Bozarth, J.M. (2002). Differential efficacy of different platelet glycoprotein IIb/IIIa antagonists on platelet/fibrin-mediated clot dynamics under different conditions using thrombelastography: the critical need for anticoagulant. Coronary artery disease 13, 243-248.
Niu, G., and Chen, X. (2011). Why integrin as a primary target for imaging and therapy. Theranostics 1, 30-47.
Niu, J., Gu, X., Ahmed, N., Andrews, S., Turton, J., Bates, R., and Agrez, M. (2001). The alphaVbeta6 integrin regulates its own expression with cell crowding: implications for tumour progression. International journal of cancer Journal international du cancer 92, 40-48.
Rahman, S., Aitken, A., Flynn, G., Formstone, C., and Savidge, G.F. (1998). Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. The Biochemical journal 335 ( Pt 2), 247-257.
Ramjaun, A.R., and Hodivala-Dilke, K. (2009). The role of cell adhesion pathways in angiogenesis. The international journal of biochemistry & cell biology 41, 521-530.
Reddig, P.J., and Juliano, R.L. (2005). Clinging to life: cell to matrix adhesion and cell survival. Cancer metastasis reviews 24, 425-439.
Scarborough, R.M., Rose, J.W., Hsu, M.A., Phillips, D.R., Fried, V.A., Campbell, A.M., Nannizzi, L., and Charo, I.F. (1991). Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. The Journal of biological chemistry 266, 9359-9362.
Schagger, H., Link, T.A., Engel, W.D., and von Jagow, G. (1986). Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods in enzymology 126, 224-237.
Senn, H., and Klaus, W. (1993). The nuclear magnetic resonance solution structure of flavoridin, an antagonist of the platelet GP IIb-IIIa receptor. Journal of molecular biology 232, 907-925.
Shimaoka, M., and Springer, T.A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nature reviews Drug discovery 2, 703-716.
Springer, T.A., and Wang, J.H. (2004). The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Advances in protein chemistry 68, 29-63.
Takada, Y., Ye, X., and Simon, S. (2007). The integrins. Genome biology 8, 215.
Takagi, J. (2007). Structural basis for ligand recognition by integrins. Current opinion in cell biology 19, 557-564.
Tamkun, J.W., D.W. DeSimone, D. Fonda, R.S. Patel, C. Buck, A.F. Horwitz, and R.O. Hynes. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
Temming, K., Schiffelers, R.M., Molema, G., and Kok, R.J. (2005). RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 8, 381-402.
Traxlmayr, M.W., Wozniak-Knopp, G., Antes, B., Stadlmayr, G., Ruker, F., and Obinger, C. (2011). Integrin binding human antibody constant domains--probing the C-terminal structural loops for grafting the RGD motif. Journal of biotechnology 155, 193-202.
Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.J., Marcinkiewicz, M.M., and McLane, M.A. (1999). Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. The Journal of biological chemistry 274, 37809-37814.
Wozniak, M.A., Modzelewska, K., Kwong, L., and Keely, P.J. (2004). Focal adhesion regulation of cell behavior. Biochimica et biophysica acta 1692, 103-119.
Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science (New York, NY) 294, 339-345.
Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science (New York, NY) 296, 151-155.
Yang, R.S., Tang, C.H., Chuang, W.J., Huang, T.H., Peng, H.C., Huang, T.F., and Fu, W.M. (2005). Inhibition of tumor formation by snake venom disintegrin. Toxicon : official journal of the International Society on Toxinology 45, 661-669.
Yeh, C.H., Peng, H.C., Yang, R.S., and Huang, T.F. (2001). Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Molecular pharmacology 59, 1333-1342.
梁天豪 (2012). 利用Rho探討去整合蛋白C端序列對於整合蛋白的辨識及LIBS的表現. 國立成功大學生物化學研究所碩士論文.
郭芷歆 (2011). 探討ARGDMX motif在Rhodostomin中對於辨識整合蛋白αvβ3、αIIbβ3、α5β1所扮演的角色。. 國立成功大學生物化學研究所碩士論文.
郭瑞庭 (1998). 馬來蝮蛇蛇毒基因的選殖及蛇毒蛋白之功能及三度空間結構之研究。. 國立成功大學生物化學研究所碩士論文.
詹秉澤 (2012). 利用馬來腹蛇蛇毒蛋白作為架構設計針對整合蛋白αvβx及α5β1之專一性拮抗物. 國立成功大學生物化學研究所碩士論文.
陳怡均 (2012). 利用Echistatin 和 Rhodostomin的RGD 序列及C端區域來探討其在整合蛋白辨識上的角色. 國立成功大學生物化學研究所博士論文.
校內:2019-08-20公開