簡易檢索 / 詳目顯示

研究生: 顧嘉安
Ku, Chia-An
論文名稱: 以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地利用型態之影響─以台北市為例
Simulating Impact of Extreme Flood on Urban Land Use Pattern based on Markovian Cellular Automata -A Case Study of Taipei, Taiwan.
指導教授: 鄒克萬
Tsou, Ko-Wan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: 細胞自動機淹水潛勢土地利用變遷馬可夫鍊時空動態模擬極端洪水
外文關鍵詞: Cellular Automata, Spatial dynamic modeling, Markov chain analysis, Land use simulation, Extreme flood, Taipei City, Taiwan
相關次數: 點閱:123下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 洪災在全世界之自然災害事件之中占了40%左右,而在全世界之自然災害死亡數當中亦有一半為洪災造成。此外,未來在氣候變遷下亦可能造成短時間內更強的降雨量,進而使得洪水規模大幅增加,導致更嚴重的生命財產損失,故都市洪水之研究在最近幾年來成為相當重要的議題。過去關於都市洪水對土地利用的影響研究當中,對於洪水在時間軸變化考量多屬於靜態之方式,故較無法確實掌握因氣候變遷而形成之極端洪水導致土地利用在時間與空間上之動態變化情形。此外,過去相關模擬研究中對於洪水的考量僅透過淹水範圍的設定做為限制發展地區,忽略了不同淹水深度可能對土地利用的變遷存在著不同程度的影響。
    因此,本研究嘗試以馬可夫鍊為基礎之細胞自動機空間動態模擬架構,藉以深入了解在氣候變遷可能造成之極端淹水潛勢情況下未來都市土地利用之型態變化為何。本研究首先透過GIS疊圖、相關分析、以及空間多準則評估(MCE)等方法深入探討淹水潛勢以及其他變遷因子對於住宅、商業及工業土地利用變遷的相對影響程度;其次根據分析結果做為細胞自動機模擬中三種土地利用發展潛力的權重計算。在台北市之實證研究中,本研究建立之細胞自動機動態模擬架構在前期模擬部分具有可信的解釋效力(Kno=0.7944,Klocation=0.7637,整體精確度達81.31%)。本研究進而設定五種極端洪水情境以模擬未來12年之土地利用變遷情形。模擬結果顯示在增高之淹水潛勢下都市發展將會呈現更為蔓延之情形,且原高淹水深度地區將逐漸轉作低人口密度之使用。這樣的都市發展型態則需透過漸進式規劃來因應淹水潛勢改變所造成土地利用之時空演變,以確保未來公共設施與交通運輸能夠有效率配合新聚落的發展而達到理想情形。

    Floods account for 40% of all natural disaster events happened in the world and 50% of their total death numbers. Most of the studies on urban flood over the past few decades have generally focused on the influence of land-use change on urban flood. However, there is still limited literature on how urban flood affects the land use pattern. Although several studies took floods into account in modeling the land-use changing, they failed to consider the fact that different depths of inundation might have significantly different impacts on land use pattern. Besides, past studies roughly regarded flood extent as static in temporal aspects so that the temporal dynamics driven by climate change were lack of consideration.
    Therefore, this paper developed a spatial dynamic modeling approach for evaluating the impact of urban flood on land use pattern based on methods of markovian cellular automata(CA) and spatial multi-criterion evaluation (MCE). Extreme flood events which are likely caused by climate change were also included by scenario-settings in modeling processes. The study area was in Taipei City, where is the capital of Taiwan and it had experienced increasing flood events that caused severe damage in the past decade. The calibration and validation of CA showed acceptable level of Kappa statistics (0.7944) and 81.31% of total accuracy which proved the ability of the model. Land use simulation scenarios under extreme flood of year 2019 were thus conducted and the results indicated that the future pattern under extreme flood will become more sprawling and scattering. Meanwhile, a large part of housing and commercial cells used to be located in highly flood-prone area will gradually disappear and new urban cells tend to locate in places where are outside the city centers.

    第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究內容 3 第三節 研究範圍界定 5 第四節 研究流程 7 第二章 文獻回顧 8 第一節 氣候變遷與極端洪水之研究 8 第二節 洪水與都市土地利用型態相關研究 11 第三節 馬可夫鍊與細胞自動機模型 14 第四節 都市發展潛力評估之因子選擇與權重 22 第三章 研究設計 27 第一節 極端洪水對都市土地利用型態影響 27 第二節 馬可夫鍊細胞自動機模型與空間多準則評估 31 第三節 未來土地利用模擬結果評估 40 第四章 實證研究與結果討論 44 第一節 實證研究區域與資料 44 第二節 淹水潛勢與都市土地利用變遷之關聯 47 第三節 台北市之都市土地利用發展限制與潛力分析 55 第四節 土地利用模擬結果評估與討論 62 第五章 結論與建議 84 第一節 結論 84 第二節 建議 89 參考文獻 91 附錄 101

    一、中文文獻
    1. 丁志堅(1997),運用馬可夫鏈模式度量土地利用變遷之研究,「臺灣大學地理學研究所碩士論文」。
    2. 台北市政府(2006),地區災害防救計畫。2009年9月6日,取自台北市防災資訊網網址http://tdprc2.tfd.gov.tw/TaipeiCityEms1_public/org2.html
    3. 朱健銘(2000),土地利用空間型態之研究,「臺灣大學地理學研究所碩士論文」。
    4. 何錦杭(2006),一個以CA為基礎之永續城鄉土地劃設支援模式,「成功大學都市計劃研究所碩士論文」。
    5. 林士弘(2002),結合宮格自動機與地理資訊系統在台北盆地土地使用變遷模擬之研究,「台灣大學土木工程學研究所碩士論文」。
    6. 林韋秀、廖學誠(2005),汐止地區店家的洪患災害識覺及調適行為之研究,「中華水土保持學報」, 第36卷,第4期,第413-427頁
    7. 林峰田、林佩憓(2005),臺北捷運內湖線都市發展推估方法之研究,「規劃學報」,第32期,第 1-12 頁。
    8. 周天穎、簡甫任、雷祖強(2003),都市地區土地利用變遷量化分析之研究,「台灣土地研究」,第6卷,第1期,第105-130頁。
    9. 張國強、王藝峰、鄭欽韓、蔡長泰、羅偉誠(2009),地文性淹水預警模式之發展與應用,「第十三屆海峽兩岸水利科技交流研討會」。
    10. 楊文仁、范正成、張于漢(2007),氣候變遷對台灣北部地區土壤沖蝕有效降雨事件之影響,「農業工程學報」,第53卷,第1期,第1-12頁。
    11. 陳文福、謝建宏(2004),二維淹水模式應用於排水最佳抽水量擇定之研究,「坡地防災學報」,第3卷,第2期,第39-56頁。
    12. 陳佳正、盧孟明(2007),台灣極端降雨氣候事件判定方法,「大氣科學」,第35卷,第2期,第105-117頁。
    13. 陳亮全、陳海立(2007),易致災都市空間發展之探討:以臺北盆地都市水災形成為例,「都市與計劃」,第34卷,第3期,第 293-315頁。
    14. 游保杉(2004),水文循環與洪水,「科學發展」,第374期,第6-13頁。
    15. 張曜麟(2005),都市土地利用變遷之研究,「成功大學都市計劃研究所博士論文」。
    16. 張政亮、張瑞津(2006),運用馬可夫鏈模型與細胞自動機理論模擬植生復育之研究:以九九峰地區為例,「地理研究」,第45期,第123-142頁。
    17. 黃書禮、蔡靜如(2000),台北盆地土地利用變遷趨勢之研究,「都市與計劃」,第27卷,第1期,第1-22頁。
    18. 黃煜彬(2005),區域所得空間分佈之時空變遷情形之探討,「成功大學都市計劃研究所碩士論文」。
    19. 鄒克萬(2000),區域人口分布之時空分析,「台灣土地科學學報」,第1期,第33-50頁。
    20. 鄒克萬、黃書偉(2003),台灣地區所得空間公平性變遷之研究,「規劃學報」,第30期,第47-57頁。
    21. 鄒克萬、黃書偉(2007),都市土地利用變遷對自然環境衝擊之空間影響分析,「地理學報」,第48期,第1-18頁。
    22. 詹士樑、黃書禮、王思樺(2003),台北地區洪水災害風險分區劃設之研究,「都市與計劃」,第30卷,第4期,第263-280 頁。
    23. 楊雲龍(1995),蘭陽平原環境災害識覺之研究,「臺灣大學地理研究所博士論文」。
    24. 蔡佩璇(2009),土地使用分區管制對都市土地使用變遷之影響,「成功大學都市計劃研究所碩士論文」。
    25. 賴進貴、葉高華、王韋力(2004),土地利用變遷與空間相依性之探討以臺北盆地聚落變遷為例,「台灣地理資訊學刊」,第1期,第29-40頁。
    26. 顏榮甫、楊昌儒、蔡長泰(2000),應用地文性淹水模式進行降雨-逕流模擬之研究,「台灣水利」,第48卷,第4期,第20-33頁。
    27. 譚仲哲、童慶斌(2008),氣候變遷對台北地下水補注之衝擊,「農業工程學報」,第54卷,第1期,第1-15頁。

    二、英文文獻
    1. Alberti, M. and Waddell, P. (2000). An integrated urban development and ecological simulation model. Integrated Assessment, 1:215–227.
    2. Anselin, L. (1995). Local indicators of spatial association -LISA, Geographical Analysis, 27:93-115.
    3. Apan, A. A., Raine, S. R. and Paterson, M. S. (2002). Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley catchment, Queensland, Australia, Landscape and Urban Planning, 59(1):43-57.
    4. Apel, H., Aronica, G. T., Kreibich, H. and Thieken, H. (2009). Flood risk analyses—how detailed do we need to be?, Natural Hazards, 49:79-98.
    5. Baltzer, H. (2000). Markov chain models for vegetation dynamics, Ecological Modeling, 126: 139–154.
    6. Baltzer, H., Braun, P. W. and Kohler, W. (1998). Cellular automata models for vegetation dynamics, Ecological Modeling, 107: 113–125.
    7. Baldassarre, G. D., Castellarin, A., Montanari, A., and Brath, A. (2009). Probability-weighted hazard maps for comparing different flood risk management strategies: a case study, Natural Hazards, 50:479–496
    8. Baldassare, M. and C. Katz. (1992). The personal threat of environmental problems as predictor of environmental practices, Environment and Behavior, 24(5): 602–16.
    9. Batty, M., Couclelis, H. and Eichen, M. (1997). Urban systems as cellular automata, Environment and Planning B, 24:159–164.
    10. Batty, M., Xie, Y. and Sun, Z. (1999). Modeling urban dynamics through GIS-based cellular automata, Computer, Environment and Urban Systems, 23: 205–233.
    11. Barredo, J., Kasanko, M., Mccormick, M. and Lavalle, C. (2003). Modellng dynamic spatial processes: simulation of urban future scenarios through cellular automata, Landscape and Urban Planning, 64:145–160.
    12. Botzen, W. J., W., Aerts, J. C. J. H. and van den Bergh, J. C. J. M. (2009). Dependence of flood risk perceptions on socioeconomic and objective risk factors, Water Resources Research, 45, W10440.
    13. Brown, D. G., Pijanowski, B. C. and Duh, J. D. (2000). Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA, Journal of Environmental management, 59: 247–263.
    14. Burrough, P. A., MacMillan, R. A. and van Deursen, W. (1992). Fuzzy classification methods for determining land suitability from soil profile observations and topography, Journal of Soil Science, 43: 193- 210.
    15. Camorani, G., Castellarin, A. and Brath, A. (2006). Effects of land-use changes on the hydrologic response of reclamation systems, Physical, Chemical and Earth, 30:561–574.
    16. Carrivick, J. L. (2006). Application of 2D hydrodynamic modelling to high-magnitude outburst floods: An example from Kverkfjoll, Iceland, Journal of Hydrology, 321:187-199.
    17. Chang, H., Franczyk, J. and Kim, C. (2009). What is responsible for increasing flood risks? The case of Gangwon Province, Korea, Natural Hazards, 48: 339–354.
    18. Chen, J., Hill, A. A. and Urbano, L. D. (2009). A GIS-based model for urban flood inundation, Journal of Hydrology, 373 :184-192
    19. Chen, W. L., Ku, C. A. and Chang, H. S. (2010). Incorporating Spatial Regression into Cellular Automata for Modeling Land Use Change ─Case Study of Tainan, Taiwan, 15th Inter-university Seminar on Asian Megacities, Japan:Tokyo.
    20. Chen, C. N., Tsai, C. H. and Tsai, C. T. (2007). Reduction of discharge hydrograph and flood stage resulted from upstream detention ponds hydrological Processes, 21: 3492–3506
    21. Choudhury, N. Y., Paul, A. and Paul, B. K. (2004). Impact of costal embankment on the flash flood in Bangladesh: a case study, Applied Geography, 24:241-258.
    22. Clemmens, A. J., Bautista, E., Wahlin, B. T. and Strand, R. J. (2005). Simulation of Automatic Canal Control Systems, Journal of Irrigation and Drainage Engineering, 131(4):324-335
    23. Clarke, K. C., Hoppen, S. and Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area, Environment and Planning B, 24:247–261.
    24. de Almedia, C. M., Batty, M., Monteiro, A. M. V., Camara, G., Soares-Filho, B. S. and Cerqueira, G. C., et al. (2003). Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation, Computers, Environment and Urban Systems, 27:481–509.
    25. de Moel, H., van Alphen, J. and Aerts, J. C. J. H. (2009). Flood maps in Europe – methods, availability and use, Natural Hazards and Earth System Science, 9:289–301.
    26. Dietzel, C. and Clarke, K. (2006). The effect of disaggregating land use categories in cellular automata during model calibration and forecasting, Computer, Environment and Urban Systems, 30:78-101.
    27. Eastman, J. R. (2006). IDIRISI Andes guide to GIS and image processing, Clark Labs, Clark University, Worcester, MA, pp 165.
    28. Eastman, J.R. (2003). IDIRISI Kilimanjaro guide to GIS and image processing, Clark Labs, Clark University, Worcester, MA, pp 305.
    29. Eastman, J. R. (1996). Uncertainty and decision risk in multi-criteria evaluation: implications for GIS software design. In Proceedings, UN University International Institute for Software T echnology Expert Group Workshop on Software T echnology for Agenda’21: Decision Support Systems, February 26- March 8, Macao, China, Section 8.
    30. Eastman, J. R., Kyem, P. A. K., Toledano, J. and Jin, W. (1993). GIS and decision making, Explorations in Geographic Information System Technology, 4 (Geneva: UNITAR) (single volume).
    31. Fohrer, N., Haverkamp, S., Eckhardt, K. and Frede, H. G. (2001). Hydrologic response to land use changes on the catchment scale, Physical, Chemical and Earth, 26:577–582.
    32. Fontaine, C. M. and Rounsevell, M. D. A. (2009). An agent-based approach to model future residential pressure on a regional landscape, Landscape Ecology, 24:1237-1254.
    33. Foody, G. (1992). On the compensation for chance agreement in image classification accuracy assessment, Photogmmmetric Engineering and Remote Sensing, 58(10):1459-1460.
    34. Fuller, D. O., Meijaard, E. M., Christy L. and Jessup, T. C. (2010). Spatial assessment of threats to biodiversity within East Kalimantan, Indonesia, Applied Geography, 30: 416–425.
    35. Gilruth, P. T., Marsh, S. E. and Itami, R. (1995). A dynamic spatial model of shifting cultivation in the highlands of Guinea, West Africa, Ecology modeling, 79: 179–197.
    36. Han, J., Hayashi, Y., Cao, X. and Imura, H. (2009). Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China, Landscape and Urban Planning, 91:133–141.
    37. Haase, D. and Nuissl, H. (2007). Does urban sprawl drive changes in the water balance and policy? The case of Leipzig (Germany) 1870-2003, Landscape and Urban Planning, 80 (1-2): 1-13.
    38. Hea, C. Y., Norio O., Zhang, Q. F., Shi P. and Li, J. G. (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata, Landscape and Urban Planning, 86:79-91.
    39. IPCC (2007). Climate Change 2007: The physical science basis, Contribution of Working Group I to the IPCC Fourth Assessment Report, Cambridge University Press, Cambridge.
    40. Irwin, E. G. and Geoghegan, J. (2001). Theory, data, methods: developing spatially explicit econometric models of land use change, Agriculture, Ecosystems and Environment, 85:7–23.
    41. Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision making methods, International Journal of Geographical Information Systems, 9: 251- 273.
    42. Jansen, R. and Rietveld, P. (1990). Multi-criteria analysis and geographical information systems: an application to agricultural land use in The Netherlands. In Geographical Information Systems for Urban and Regional Planning, edited by H. J. Scholten and J. C. H. Stillwell (The Netherlands: Kluwer Academic Publisher), pp. 129- 139.
    43. Jiang, H. and Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS, International Journal of Geographical Information Science, 14(2):173 -184.
    44. Jonkman, S. N. and Vrijling, J. K. (2008). Loss of life due to floods, Journal of Flood Risk Management, 1(1):43–56.
    45. Joshi, H., Guhathakurta, S., Konjevod, G., Crittenden, J. and Li, K. (2006). Simulating the effect of light rail on urban growth in Phoenix: An application of the UrbanSim modeling environment, Journal of Urban Technology, 13(2):91- 111.
    46. Kamusoko, C., Aniya, M., Adi, B. and Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe–Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model, Applied Geography, 29:435-447.
    47. Kahneman, D. (2003). Maps of bounded rationality: Psychology for behavioral economics, American Economic Review, 93(5): 1449 – 1475.
    48. Kleinen, T. and Petschel-Held, G. (2007). Integrated assessment of changes in flooding probabilities due to climate change, Climate Change, 81: 283–312.
    49. Kyselý, J. and Beranová, R. (2009). Climate-change effects on extreme precipitation in central Europe: uncertainties of scenarios based on regional climate models, Theoretical and Applied Climatology, 95:361–374.
    50. Laska, S.B. (1990). Homeowner adaptation to flooding: An application of the General Hazards Coping Theory, Environment and Behavior, 22(3): 320-57.
    51. Li, H. and Reynolds, J. F. (1997). Modeling effects of spatial pattern, drought, and grazing on rates of rangeland degradation: a combined Markov and cellular automaton approach. In D. A. Quattrochi, & M. F. Goodchild (Eds.), Scale in remote sensing and GIS (pp. 211–230). Boca Raton, Florida:: Lewis Publishers.
    52. Li, X. and Yeh, A. G. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS, International Journal of Geographical Information Science, 16(4): 323 - 343
    53. Marshall, E. and Randhir, T. O. (2008). Spatial modeling of land cover change and watershed response using Markovian cellular automata and simulation, Water Resources Research, 44: W04423.
    54. McColl, C. and Aggett, G. (2007). Land-use forecasting and hydrologic model integration for improved land-use decision support, Journal of Environmental Management, 84:494–512.
    55. Meyer, V., Scheuer, S. and Haase, D. (2009). Multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany, Natural Hazards, 48:17-39.
    56. Milly, P. C. D., Wetherald, R. T., Dunne, K. A. and Delworth, T. L. (2002). Increasing risk of great floods in a changing climate, Nature, 415: 514-517.
    57. Myatt, L. B., Scrimshaw, M. D. and Lester, J. N. (2003). Public perceptions and attitudes towards a forthcoming managed realignment scheme: Freiston Shore, Lincolnshire, UK, Ocean & Coastal Management, 46:565-582.
    58. Ohl, C. and Tapsell, S. (2000). Flooding and human health: the dangers posed are not always obvious, BMJ, 321:1167–1168.
    59. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J. and Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review, Annals of the Association of American Geographers, 93:314–337.
    60. Pettit, C. and Pullar, D. (2004). A way forward for land-use planning to achieve policy goals by using spatial modelling scenarios, Environment and Planning B: Planning and Design,31: 213 – 233.
    61. Pontius, R. G. and Malanson, J. (2005). Comparison of the structure and accuracy of two land change models, International Journal of Geographical Information Science, 19(2), 243–265.
    62. Pontius, R. G. (2000). Quantification Error Versus Location Error in Comparison of Categorical Maps, Photogrammetric Engineering & Remote Sensing, 66(8): 1011-1016.
    63. Poska, A., Sepp, E., Veski, S. and Koppel, K. (2008). Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rouge, South Estonia, Vegetation History and Archaeobotany, 17:527–541.
    64. Raaijmakers, R., Krywkow, J. and van der Veen, A. (2008). Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation, Natural Hazards, 46:307-322.
    65. Rees, W. G. (2008). Comparing the spatial content of thematic maps, International Journal of Remote Sensing, 29(13): 3833 -3844.
    66. Saldana-Zorrilla, S. (2009). Spatial econometric model of natural disaster impacts on human migration in vulnerable regions of Mexico, Disasters, 33(4): 591−607.
    67. Sheng, J. and Wilson, J. P. (2009). Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region, Natural Hazards, 48:41–57.
    68. Silverton, J., Holtier, S., Johnson, J. and Dale, P. (1992). Cellular automaton models of interspecific competition for space-the effect of pattern on process, Journal of Ecology, 80:527–534.F.
    69. Slovic, P. (1987). Perception of risk, Science, 236(4799): 280 – 285.
    70. Smith, V. J. R. (2007). Statistics to measure correlation for data mining applications, Computational Statistics & Data Analysis, 51:3968-3982.
    71. Tudes, S. and Yigiter, N. D. (2010). Preparation of land use planning model using GIS based on AHP:case study Adana-Turkey, Bulletin of Engineering Geology and the Environment, 69:235–245.
    72. Tversky, A. and Kahneman, D. (1986). Rational choice and the framing of decisions, Journal of Business, 59(S4): 251- 278.
    73. Wan, R. R. and Yang, G. S. (2007). Influence of land use/cover change on storm runoff—A case study of Xitiaoxi river basin in upstream of Taihu lake watershed, Chinese Geographical Science, 17(4):349-356.
    74. Whitmarsh, L. (2008). Are flood victims more concerned about climate change than other people? The role of direct experience in risk perception and behavioural response, Journal of Risk Research, 11(3), 351-374
    75. White, R. and Engelen, G. (1997). Cellular automata as the basis of integrated dynamic regional modeling, Environment and Planning B, 24:235–246.
    76. Wood, L. J. and Dragicevic, S. (2007). GIS-based multicriteria evaluation and fuzzy sets to identify priority sites for marine protection, Biodiversity and Conservation, 16:2539-2558.
    77. Wu, D., Liu, J., Zhang, G., Ding, W., Wang, W. and Wang, R. (2009). Incorporating spatial autocorrelation into cellular automata model: An application to the dynamics of Chinese tamarisk, Ecological Modelling, 220: 3490-3498.
    78. Xie, Y. and Batty, M. (2005). Integrated urban evolutionary modeling. In P. M. Atkinson, G. M. Foody, S. E. Darby, & F. Wu (Eds.), GeoDynamics. Boca Raton: CRC Press.
    79. Zhang, Y. A., Peterman, M. R., Aun, D. L. and Zhang, Y. (2008). Cellular automata: simulating alpine tundra vegetation dynamics in response to global warming, Arctic, Antarctic, and Alpine Research, 40(1):256-263
    80. Zhu, Z. Q., Liu, L., Chen, Z., Zhang, J. and Verburg, P. H. (2010). Land-use change simulation and assessment of driving factors in the loess hilly region—a case study as Pengyang County, Environmental Monitoring and Assessment, 164:133–142.

    下載圖示 校內:2011-07-30公開
    校外:2011-07-30公開
    QR CODE