| 研究生: |
蔣斐羽 Chiang, Fei-Yu |
|---|---|
| 論文名稱: |
以非固定網格之二維模式模擬空庫排淤操作水庫之水理水質 Water quality simulation of an empty flushing reservoir using a two-dimensional variable grid model |
| 指導教授: |
張智華
Chang, Chih-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 215 |
| 中文關鍵詞: | 空庫排淤 、水質模式 、變網格 、涵容能力 |
| 外文關鍵詞: | empty flushing, water quality model, variable grid, assimilative capacity |
| 相關次數: | 點閱:151 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿公店水庫為全台唯一一個定期實施空庫排淤操作之水庫,然而在空庫排淤操作時期,會使水庫某些水質呈現惡化情況,造成水庫被評估為優養。阿公店水庫方於2006年完成更新、操作不到10年常被視為優養,空庫排淤確為原因之ㄧ。有鑒於空庫排淤所造成水質之惡化問題,針對空庫排淤時期之水質管理變得相當重要,但因利用一般二維水理水質模式並無法有效模擬出空庫排淤時期之變化;因此本研究係將阿公店水庫分成蓄水時期與空庫排淤時期,並將各時期於2008年至2013年各分為五段,再利用CE-QUAL-W2水理水質模式,以變網格方式分別建立各期間之適當網格進行水庫水理及水質模擬,同時探討不同時期水庫之涵容能力。
分析結果顯示,以CE-QUAL-W2模擬阿公店水庫水位、水溫等水理現象,模擬結果為可被接受。本研究另針對優養化相關因子進行水質分析,分別探討懸浮固體物、葉綠素a、總磷、總氮、溶氧及總有機碳。懸浮固體物、總磷及總氮模擬結果在降雨發生後都會有波峰產生,但其他天數則會有低估情形;相對地,葉綠素a整體而言則會有高估情形。但是一維網格在降雨發生後都會造成葉綠素a降低;而總有機碳模擬情形之趨勢大致上與葉綠素a相似。
分析阿公店水庫不同時期之涵容能力發現,一維網格平均涵容能力都較二維網格時期低,而一維網格時期於透明度分析上並無涵容能力;若針對空庫排淤時期改善水庫水質,會使得污染改善成本太高,且改善效率不如預期。綜合上述結果得知,若針對阿公店水庫進行全年度優養化指標分析時,若無重大用水考量,則建議不要將空庫排淤時期列入考量;針對蓄水時期之污染改善策略建議可針對越域引水水質以及集水區內農業灌溉進行改善,將可有效改善蓄水時期水庫優養化之現象。
Agongdian Reservoir is the only reservoir in Taiwan that regularly uses an empty flushing strategy for desiltation. The empty flushing method involves the use of reservoir inflow to wash away sediment from the reservoir bottom by transferring the sediment further downstream. Main sources of Agongdian Reservoir water inflow include: cross-watershed diversion, rainfall runoff, direct channel precipitation, and water coming from the ZuoShui and WangLai Rivers within the reservoir’s catchment. The objective of this study is to build up a suitable water quality model for an empty flushing reservoir. The methodology for this study was therefore split into three stages. First, the modeling strategies in the Agongdian Reservoir were divided into two periods alternating between the storage period and the empty flushing period. Second, a variable grid was established for each period of water quality modeling. Third, the assimilative capacity of the reservoir to receive pollutants at different periods were then compared and analyzed. The results of this study show: (1) Using acceptable water levels (i.e. RMSE< 0.539) and water temperatures (i.e. AME < 1.678) is a good indicator that simulated water quality results in this study are robust. (2) Based on the water quality model, rainfall is the major source of inflow pollution during periods of empty flushing. In addition, during the water storage period, cross-watershed diversion is another important factor to consider. (3) The empty flushing period has a relatively lower carrying capacity compared to the water storage period, where sediment has time to settle on the bottom. The lower carrying capacity is due to multiple factors including: sediment remaining suspended in the water column, re-suspension of sediment settled on the reservoir bottom, which thereby causes release of phosphate and nitrogen into the water body. Based on these findings in the Agongdian Reservoir, this study suggests that because of lower carrying capacity, improvement of water quality during empty flushing period is an unnecessary additional cost. So, unlike other reservoirs in Taiwan, eutrophication analysis for the Agongdian Reservoir should be considered only during the water storage period.
Afshar, A., Kazemi, H., & Saadatpour, M. (2011). Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran. Water Resources Management, 25(10), 2613-2632. doi: 10.1007/s11269-011-9829-7
Bilotta, G. S., & Brazier, R. E. (2008). Understanding the Influence of Suspended Solids on Water Quality and Aquatic Biota. Water Res, 42(12), 2849-2861. doi: 10.1016/j.watres.2008.03.018
Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., Johnson, K. M., Chan, P. W. H., Gherini, S. A., & Chamberlin, C. E. (1985) Rates, Constants and Kinetics Formulations in Surface Water Quality Modelling. second ed. US Environmental Protection Agency.
Carlson, R. E. (1977). Trophic State Index for Lakes. Limnology and Oceanography, 22(2), 361-369.
Chapra, S. C. (1976). Surface Water-Quality Modeling.
Chen, Y. Y., Shen, Y., & Yang, S. Y. (2013). Variation of Nitrogen During the High Suspended Sediments Concentration Water Supply in an Artificial Shallow Lake. Huanjing Kexue, 34(9), 3437-3444.
Chung, S. W., Ko, I. H., & Kim, Y. K. (2008). Effect of Reservoir Flushing on Downstream River Water Quality. Journal of Environmental Management, 86(1), 139-147. doi: 10.1016/j.jenvman.2006.11.031
Cole, T. M., & Wells, S. A. (2011). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.71 User Manual
Dawson, E. J., & Macklin, M. G. (1998). Speciation of Heavy Metals on Suspended Sediment under High Flow Conditions in the River Aire, West Yorkshire, UK. Hydrological Processes, 12(9), 1483-1494. doi: 10.1002/(sici)1099-1085(199807)12:9<1483::aid-hyp651>3.3.co;2-n
Haygarth, P. M., Bilotta, G. S., Bol, R., Brazier, R. E., Butler, P. J., Freer, J., Gimbert, L. J., Granger, S. J., Krueger, T., Macleod, C. J. A., et al. (2006). Processes Affecting Transfer of Sediment and Colloids, With Associated Phosphorus, from Intensively Farmed Grasslands: An Overview of Key Issues. Hydrological Processes, 20(20), 4407-4413. doi: 10.1002/hyp.6598
Hodges, B. R. (2009). Hydrodynamical Modeling. ELSEVIER, 613-627.
Hou, D. K., He, J., Lu, C. W., Dong, S. W., Wang, J. H., Xie, Z. L., & Zhang, F. J. (2014). Spatial Variations and Distributions of Phosphorus and Nitrogen in Bottom Sediments from A Typical North-Temperate Lake, China. Environmental Earth Sciences, 71(7), 3063-3079. doi: 10.1007/s12665-013-2683-6
Kronvang, B., Laubel, A., Larsen, S. E., & Friberg, N. (2003). Pesticides and Heavy Metals in Danish Streambed Sediment. Hydrobiologia, 494(1-3), 93-101. doi: 10.1023/a:1025441610434
Lloyd, D. S., Koenings, J. P., & Laperriere, J. D. (1987). Effects of Turbidity in Fresh Waters of Alaska USA. North American Journal of Fisheries Management, 7(1), 18-33. doi: 10.1577/1548-8659(1987)7<18:eotifw>2.0.co;2
Martin, N., McEachern, P., Yu, T., & Zhu, D. Z. (2013). Model Development for Prediction and Mitigation of Dissolved Oxygen Sags in The Athabasca River, Canada. Science of the Total Environment, 443, 403-412. doi: 10.1016/j.scitotenv.2012.10.030
Mathews, J. H., & Fink, K. K. (2004). Numerical Methods Using Matlab.
Miller, J. R. (1997). The Role of Fluvial Geomorphic Processes in The Dispersal of Heavy Metals from Mine Sites. Journal of Geochemical Exploration, 58(2-3), 101-118. doi: 10.1016/s0375-6742(96)00073-8
Russell, M. A., Walling, D. E., Webb, B. W., & Bearne, R. (1998). The Composition of Nutrient Fluxes from Contrasting UK River Basins. Hydrological Processes, 12(9), 1461-1482. doi: 10.1002/(sici)1099-1085(199807)12:9<1461::aid-hyp650>3.0.co;2-6
Ryan, P. A. (1991). Environmental-Effects of Sediment on New-Zealand Streams - A Review. New Zealand Journal of Marine and Freshwater Research, 25(2), 207-221.
Shampine, L. F., & Gordon, M. K. (1975). Computer Solution of Ordinary Differential Equation: the Initial Value Problem.
Streeter, H. W., & Phelps, E. B. (1925). A Study of the Pollution and Natural Purification of the Ohio River. III. Factors Concerned in the Phenomena of Oxidation and Reaeration: U.S. Government Printing Office.
Suli, E. (2014). Numerical Solution of Ordinary Diffential Equations. University of Oxford.
Thomas M. Cole, & Edward M. Buchak. (1995). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0 User Manual Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA298467
Verstraeten, G., & Poesen, J. (2000). Estimating Trap Efficiency of Small Reservoirs and Ponds: Methods and Implications for The Assessment of Sediment Yield. Progress in Physical Geography, 24(2), 219-251. doi: 10.1177/030913330002400204
Wang, Q. G., Li, S. B., Jia, P., Qi, C. J., & Ding, F. (2013). A Review of Surface Water Quality Models. Scientific World Journal, 7. doi: 10.1155/2013/231768
Xu, Z., Godrej, A. N., & Grizzard, T. J. (2007). The Hydrological Calibration and Validation of A Complexly - Linked Watershed - Reservoir Model for The Occoquan Watershed, Virginia. ELSEVIER, 167-183.
何嘉浚, & 林鎮洋. (2012). 呈層複合土壤 (Multi-soil Layering )水質淨化系統應用於河川或水庫集水區. 行政院環保署.
余岱璟. (2002). 石門水庫水質模擬與水理探討. (碩士論文), 國立中央大學.
吳曉磊. (1995). 人工溼地廢水處理機制. 環境科學16卷(3期), 82-88.
林宜秀. (2003). 限制開發行為對水庫集水區水質保護之探討. (碩士論文), 國立中央大學.
林鑫怡. (2007). 曾文溪感潮河段水理與傳輸現象之模擬. (碩士論文), 國立臺南大學.
唐太山. (2001). 曾文水庫二維水理水質之模擬與風險分析. (碩士論文), 國立臺灣大學.
章瑜蓓. (2004). 二維水質模式之參數校正分析. (碩士論文), 國立中央大學.
莊鎮維. (2012). 以CE-QUAL-W2模式模擬分析新山水庫優養化之原因. (碩士論文), 國立臺灣大學.
郭振泰, 龍梧生, 楊州斌, & 羅浩文. (1998,1999,2000). 翡翠水庫水質模擬與應用(一)、(二)、(三). 翡翠水庫管理局委託: 台灣大學土木工程學研究所執行.
陳怡靜. (2004). 水文變化、生物地質化學作用及集水區人為活動對水庫磷質量平衡及藻類消長之影響-以台灣亞熱帶深水水庫為例. (博士論文), 國立臺灣大學.
陳鴻傑. (2003). 曾文水庫集水區污染物傳輸及水庫水質模擬. (碩士論文), 國立臺灣大學.
黃榮鑑, 薛曙生, 張怡穎, 陳光宇, & 袁應森. (1999). 海洋水污染擴散環境影響評估技術之研究. 行政院環境保護署委託: 中央研究院物理研究所執行.
經濟部水利署. (2006). 阿公店水庫水門操作.
經濟部水資源局. (1997). 水庫清淤方法分析規範.
謝文雄. (2003). 水庫水位激烈變化下之水理水質模擬. (碩士論文), 國立中央大學.
鍾佳玲. (2014). 利用CE-QUAL-W2模式模擬分析氣候變遷對於新山水庫水質衝擊. (碩士論文), 國立成功大學.