| 研究生: |
陳冠霖 Chen, Guan-Lin |
|---|---|
| 論文名稱: |
蓖麻油脂化學品的製造與觸媒熱裂解蓖麻粕之研究 A Study on Oleochemicals Production from Castor Oil and Catalytic Pyrolysis of Castor Meal |
| 指導教授: |
吳文騰
Wu, Wen-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 蓖麻 、觸媒熱裂解 、田口式實驗設計法 、鹼裂解 |
| 外文關鍵詞: | Castor, Catalytic pyrolysis, Taguchi method, Alkali pyrolysis |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蓖麻為世界十大油料作物之一,富含豐富的油脂稱為蓖麻油,蓖麻經過兩段式壓榨程序(冷壓榨、熱壓榨)之後約可得到50%蓖麻油與50%蓖麻粕,由於機械極限,蓖麻粕內仍殘留有相當的油脂,因此本研究主要分為兩個部分,第一部分則是利用鹼裂解法精煉壓榨蓖麻油為高單價之蓖麻油脂化學品(包含主產物癸二酸與副產物2-辛醇),第二部分主要是利用觸媒熱裂解提取蓖麻粕內的剩餘油脂及提升熱裂解產物之品質。
在癸二酸的部分,本研究採用目前在工業上最廣泛被利用的鹼裂解蓖麻油製備法。主要探討鹼裂解溫度、反應時間與氫氧化鈉濃度對於蓖麻油脂化學品(癸二酸與2-辛醇)產量的影響。本研究在鹼裂解溫度300 oC、反應時間5小時、氫氧化鈉的濃度0.6 M下,可得74.3%理論產量的癸二酸與73.9%理論產量的2-辛醇。本研究並進一步對蓖麻油進行前處理(將蓖麻油預先與氫氧化鈉混合,設定在約80 oC下均勻攪拌),發現經由24小時的前處理蓖麻油再進行鹼裂解反應,可將癸二酸的理論產量提升至79.1%,而副產物2-辛醇也隨之些微提升至75.2%。
在熱裂解的部分,本研究利用田口式實驗規劃法得知四種主要變數對於蓖麻裂解油生產量的影響程度,依序為氮氣流速、熱裂解溫度、滯留時間與升溫速率,並且獲得之最適操作條件為:熱裂解溫度400 oC、滯留時間120分鐘、升溫速率20 oC/min與氮氣流速200 mL/min下可得19.61% (g/g-castor meal)的蓖麻裂解油。本研究進一步利用氧化鋁與沸石ZSM-5為觸媒以提升熱裂解效率。實驗結果顯示,此兩種觸媒的添加,均會微幅降低蓖麻裂解油的產量。由熱分析、元素分析、GC/MS與黏度分析蓖麻裂解油,發現此兩種觸媒的添加均有助於促進蓖麻裂解油的加氫與除氧反應,使O元素以CO、CO2與H2O的形式被脫除。添加觸媒可降低熱裂解反應所需的活化能與蓖麻裂解油的黏度,提升熱裂解的反應速率、蓖麻裂解油的黏度指數與熱值,另外可催化蓖麻裂解油由較高碳數的化合物斷鍵為較低碳數化合物之組成,因此觸媒熱裂解有助提升蓖麻裂解油的品質。此外氧化鋁更有助於降低蓖麻粕熱裂解反應所需溫度,由339 oC降至284 oC。
Castor is one of the world’s top ten oil crops. Castor bean contains rich castor oil. After two stage pressing process (cold pressed and hot pressed), we can get 50% castor oil and 50% castor meal. However, castor meal still has residual oil due to the mechanical limitation. There are two parts in the study. The first part is to refine the pressed castor oil to high valuable products. The second part is to extract the residual oil from castor meal by thermal pyrolysis.
In the refinery of castor oil part, we use alkali pyrolysis to produce sebacic acid and accompanied byproduct 2-octanol. Effects of alkali pyrolytic temperature, reaction time and the concentration of sodium hydroxide on alkali pyrolysis are investigated. 74.3% of theoretical yield for sebacic acid and 73.9% of theoretical yield for 2-octanol are obtained by alkali pyrolysis under the conditions of 300oC temperature, 5 hours reaction time and the concentration of 0.6 M sodium hydroxide. Improving the pretreatment of alkali pyrolysis process(castor oil via 24 hours pretreatment then carry on alkali pyrolysis), it can increase the yield of olechemicals to 79.1% of theoretical yield for sebacic acid and 75.2% of theoretical yield for 2-octanol.
In thermal pyrolysis part, the Taghchi method is used to find the effects of different parameters on castor meal pyrolysis. The effective order of pyrolytic parameter is nitrogen flow rate> pyrolytic temperature> residence time> heating rate. The optimal conditions for the production of pyrolytic oil are: the pyrolytic temperature of 400 oC, the residence time of 120 minutes, the heating rate of 20 oC/min and the nitrogen flow rate of 200 mL/min. Therefore we can get the yield of 19.61% pyrolytic oil from the castor meal. Furthermore aluminum oxide, and zeolite ZSM-5 are also used as catalysts to study their effects on the thermal pyrolysis process. Aluminum oxide and zeolite ZSM-5 will slightly decrease the yield of pyrolytic oil. However from the experimental results of thermogravimetric analysis, GC/MS, elemental analysis and viscosity analysis, they are shown that catalysts can enhance the hydrogenation/deoxygenation reaction and make oxygen remove in the forms of CO、CO2 and H2O. The catalyst can decrease the activation energy and viscosity of pyrolytic oil. It can enhance pyrolysis reaction rate and increase viscosity index and calorific value of pyrolytic oil. The pyrolytic oil will be composed of lighter compounds. Therefore, catalytic pyrolysis can increase the quality of pyrolytic oil. In addition, aluminum oxide will decrease the pyrolysis temperature from 339 oC to 284 oC.
[1] A.K. Vasishtha, R.K. Trivedi and G. Das (1990), “Sebacic Acid and 2-Octanol from Castor Oil,” JAOCS, 67 (5) pp. 333-37
[2] Amit Kumar Jain, Amit Suhane (2012), “Research Approach & Prospects of Non Edible Vegetable Oil as a Potential Resource for Biolubricant - a Review,” Advanced Engineering and Applied Sciences: An International Journal, 1 (1) pp. 23-32
[3] Anandan, S., G. K. Anil Kumar, J. Ghosh & K. S. Ramachandra (2005), “Effect of Different Physical and Chemical Treatments on Detoxification of Ricin in Castor Cake,” Animal Feed Science and Technology, 120 (1-2) pp. 159-68
[4] Babich, I. V., M. van der Hulst, L. Lefferts, J. A. Moulijn, P. O’Connor & K. Seshan (2011), “Catalytic Pyrolysis of Microalgae to High-Quality Liquid Bio-Fuels,” Biomass and Bioenergy, 35 (7) pp. 3199-207
[5] Barnes, Daniel J., Brian S. Baldwin & Dwaine A. Braasch (2009), “Degradation of Ricin in Castor Seed Meal by Temperature and Chemical Treatment,” Industrial Crops and Products, 29 (2-3) pp. 509-15
[6] Bridgwater, A. V. (2012), “Review of Fast Pyrolysis of Biomass and Product Upgrading,” Biomass and Bioenergy, 38 pp. 68-94
[7] Cantrell, K. B., T. Ducey, K. S. Ro & P. G. Hunt (2008), “Livestock Waste-to-Bioenergy Generation Opportunities,” Bioresour Technol, 99 (17) pp. 7941-53
[8] Demiral, I. & S. Sensoz (2008), “The Effects of Different Catalysts on the Pyrolysis of Industrial Wastes (Olive and Hazelnut Bagasse),” Bioresour Technol, 99 (17) pp. 8002-7
[9] Demirbas, A. (2000), “Mechanisms of Liquefaction and Pyrolysis Reactions of Biomass,” Energy Conversion & Management, 41 pp. 633-46
[10] Demirel, Nezihe Azcan and Elif (2008), “Obtaining 2-Octanol, 2-Octanone, and Sebacic Acid from Castor Oil by Microwave-Induced Alkali Fusion,” Ind. Eng. Chem. Res., 47 pp. 1774-78
[11] Domb, Ariella Shikanov and Abraham J. (2006), “Poly(Sebacic Acid-Co-Ricinoleic Acid) Biodegradable Injectable in Situ Gelling Polymer,” Biomacromolecules, 7 pp. 288-96
[12] Dũng, Nguyễn Anh, Raweewan Klaewkla, Sujitra Wongkasemjit & Sirirat Jitkarnka (2009), “Light Olefins and Light Oil Production from Catalytic Pyrolysis of Waste Tire,” Journal of Analytical and Applied Pyrolysis, 86 (2) pp. 281-86
[13] F. A. Agblevor, S. Besler, and A. E. Wiselogel (1995), “Fast Pyrolysis of Stored Biomass Feedstocks,” Energy & Fuels, 9 pp. 635-40
[14] Figueiredo, M. K. K., G. A. Romeiro & R. N. Damasceno (2009), “Low Temperature Conversion (Ltc) of Castor Seeds—a Study of the Oil Fraction (Pyrolysis Oil),” Journal of Analytical and Applied Pyrolysis, 86 (1) pp. 53-57
[15] Fox, N. J. & G. W. Stachowiak (2007), “Vegetable Oil-Based Lubricants—a Review of Oxidation,” Tribology International, 40 (7) pp. 1035-46
[16] Friedl, A., E. Padouvas, H. Rotter & K. Varmuza (2005), “Prediction of Heating Values of Biomass Fuel from Elemental Composition,” Analytica Chimica Acta, 544 (1-2) pp. 191-98
[17] Guoren Xu , Jinlong Zou, and & Guibai Li (2008), “Ceramsite Made with Water and Wastewater Sludge and Its Characteristics Affected by Sio2 and Al2O3,” Environ. Sci. Technol., 42 pp. 7417–23
[18] Ghani, J. A., I. A. Choudhury & H. H. Hassan (2004), “Application of Taguchi Method in the Optimization of End Milling Parameters,” Journal of Materials Processing Technology, 145 (1) pp. 84-92
[19] Go¨ran Gellerstedt, Jiebing Li, Ingvar Eide, Mike Kleinert, and Tanja Barth (2008), “Chemical Structures Present in Biofuel Obtained from Lignin,” Energy & Fuels, 22 pp. 4240–44
[20] Goyal, H. B., Diptendu Seal & R. C. Saxena (2008), “Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review,” Renewable and Sustainable Energy Reviews, 12 (2) pp. 504-17
[21] GUERCI, ANTONIO SCARPA and ANTONIO (1982), “Various Uses of the Castor Oil Plant (Ricinus Communis L.) a Review,” Journal of Ethnopharmacology, 5 pp. 117 - 37
[22] Huang, Y., X. Yin, C. Wu, C. Wang, J. Xie, Z. Zhou, L. Ma & H. Li (2009), “Effects of Metal Catalysts on Co2 Gasification Reactivity of Biomass Char,” Biotechnol Adv, 27 (5) pp. 568-72
[23] Jeffrey Chow, Raymond J. Kopp, Paul R. Portney (2003), “Energy Resources and Global Development,” science, 302 pp. 1528-30
[24] Jones, D. Breese (1947), “Proteins of the Castor Bean—Their Preparation, Properties, and Utilization,” Journal of the American Oil Chemists’ Society 24 (7) pp. 247-51
[25] K.D. Carlson, A. Chaudhw and M.O. Bagbu (1990), “Analysis of Oil and Meal Fromlesquerella Fendleri Seed,” JAOCS, 67 (7) pp.
[26] Keri Cantrell, Kyoung Ro, Devinder Mahajan, Mouzhgun Anjom, and Patrick G. Hunt (2007), Role of Thermochemical Conversion in Livestock Waste-to-Energy Treatments Obstacles and Opportunities,” Ind. Eng. Chem. Res., 46 pp. 8918-27
[27] Keri Cantrell, Kyoung Ro,Devinder Mahajan, Mouzhgun Anjom and Patrick G. Hun (2007), “Role of Thermochemical Conversion in Livestock Waste-to-Energy Treatments: Obstacles and Opportunities,” Ind. Eng. Chem. Res., 46 pp. 8918-27
[28] Klass, Donald L. (1998), "Biomass for Renewable Energy, Fuels and Chemicals: Thermal Conversion: Pyrolysis and Liquefaction," 225-69
[29] Koufopanos C.A., Papayannakos N., Maschio G. and Lucchesi A. (1991), “Modelling of the Pyrolysis of Biomass Particles. Studies on Kinetics, Thermal and Heat Transfer Effects,” The Canadian Journal of Chemical Engineering, 69 pp. 907-15
[30] León, Ramón V., Anne C. Shoemaker & Raghu N. Kacker (1987), “Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios,” Technometrics, 29 (3) pp. 253-65
[31] Li, Feng Juan, Chang Lu Wang, Dong He, Ya Qiong Liu, Mian Hua Chen, Yu Rong Wang, Feng Juan Li, Zhao Hui Yang & Grace Chen (2011), “Evaluation of Genetic Diversity in Castor (Ricinus Communis L.) Using Rapd Markes,” Advanced Materials Research, 343-344 pp. 981-87
[32] Lima, Rosiane L. S., Liv S. Severino, Ligia R. Sampaio, Valdinei Sofiatti, Jucélia A. Gomes & Napoleão E. M. Beltrão (2011), “Blends of Castor Meal and Castor Husks for Optimized Use as Organic Fertilizer,” Industrial Crops and Products, 33 (2) pp. 364-68
[33] Lopez, A., I. de Marco, B. M. Caballero, M. F. Laresgoiti, A. Adrados & A. Torres (2011), “Pyrolysis of Municipal Plastic Wastes Ii: Influence of Raw Material Composition under Catalytic Conditions,” Waste Manag, 31 (9-10) pp. 1973-83
[34] Müller-Hagedorn, M., H. Bockhorn, L. Krebs & U. Müller (2003), “A Comparative Kinetic Study on the Pyrolysis of Three Different Wood Species,” Journal of Analytical and Applied Pyrolysis, 68-69 pp. 231-49
[35] Martin I. Hoffert, Ken Caldeira, Gregory Benford, David R. Criswell, Christopher Green, Howard Herzog, Atul K. Jain, Klaus S. Lackner Haroon S. Kheshgi, John S. Lewis, H. Douglas Lightfoot, Wallace Manheimer, John C. Mankins, & L. John Perkins Michael E. Mauel, Michael E. Schlesinger, Tyler Volk, Tom M. L. Wigley (2002), “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet,” SCIENCE, 298 pp. 981-87
[36] Mcneill, Ian C. (1989), “15-Thermal Degradtion ” Comprehensive Polymer Science and Supplements, 6 pp. 451-500
[37] Mutlu, Hatice & Michael A. R. Meier (2010), “Castor Oil as a Renewable Resource for the Chemical Industry,” European Journal of Lipid Science and Technology, 112 (1) pp. 10-30
[38] Neto, D.C. Lopes and A.J. Steidle (2011), “Potential Crops for Biodiesel Production in Brazil a Review,” World Journal of Agricultural Sciences, 7 (2) pp. 206-17
[39] Ogunniyi, D. S. (2006), “Castor Oil: A Vital Industrial Raw Material,” Bioresour Technol, 97 (9) pp. 1086-91
[40] Onay, O. & O. Kockar (2006), “Pyrolysis of Rapeseed in a Free Fall Reactor for Production of Bio-Oil,” Fuel, 85 (12-13) pp. 1921-28
[41] Pütün, Ersan (2010), “Catalytic Pyrolysis of Biomass: Effects of Pyrolysis Temperature, Sweeping Gas Flow Rate and Mgo Catalyst,” Energy, 35 (7) pp. 2761-66
[42] P.R. Bonelli, P.A. Della Rocca, E.G. Cerrella, A.L. Cukierman (2001), “Effect of Pyrolysis Temperature on Composition, Surface Properties and Thermal Degradation Rates of Brazil Nut Shells,” Bioresource Technology, 76 pp. 15-22
[43] Paul A. Morgan, Struan D. Robertson and John F. Unsworth (1987), “Combustion Studies by Thermogravimetric Analysis,” Fuel, 66 pp. 210-15
[44] Putun, E., B. B. Uzun & A. E. Putun (2006), “Fixed-Bed Catalytic Pyrolysis of Cotton-Seed Cake: Effects of Pyrolysis Temperature, Natural Zeolite Content and Sweeping Gas Flow Rate,” Bioresour Technol, 97 (5) pp. 701-10
[45] Ramachandran, S., S. K. Singh, C. Larroche, C. R. Soccol & A. Pandey (2007), “Oil Cakes and Their Biotechnological Applications--a Review,” Bioresour Technol, 98 (10) pp. 2000-9
[46] Scholz, Volkhard & Jadir Nogueira da Silva (2008), “Prospects and Risks of the Use of Castor Oil as a Fuel,” Biomass and Bioenergy, 32 (2) pp. 95-100
[47] Sehgal, P., M. Khan, O. Kumar & R. Vijayaraghavan (2010), “Purification, Characterization and Toxicity Profile of Ricin Isoforms from Castor Beans,” Food Chem Toxicol, 48 (11) pp. 3171-6
[48] Shrirame, Hemant Y. (2011), “Bio Diesel from Castor Oil – a Green Energy Option,” Low Carbon Economy, 02 (01) pp. 1-6
[49] Singh, A., P. S. Nigam & J. D. Murphy (2011), “Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels,” Bioresour Technol, 102 (1) pp. 10-6
[50] Singh, R. K. & K. P. Shadangi (2011), “Liquid Fuel from Castor Seeds by Pyrolysis,” Fuel, 90 (7) pp. 2538-44
[51] Sujatha, M., T. P. Reddy & M. J. Mahasi (2008), “Role of Biotechnological Interventions in the Improvement of Castor (Ricinus Communis L.) and Jatropha Curcas L,” Biotechnol Adv, 26 (5) pp. 424-35
[52] Tang, Boxin (1993), “Orthogonal Array-Based Latin Hypercubes,” Journal of the American Statistical Association, 88 (424) pp. 1392-97
[53] Uzun, B.B., Sariog˘lu, N. (2009), “Rapid and Catalytic Pyrolysis of Corn Stalks.,” Fuel process. technol., 90 pp. 705-16
[54] Wang, Denghui, Rui Xiao, Huiyan Zhang & Guangying He (2010), “Comparison of Catalytic Pyrolysis of Biomass with Mcm-41 and Cao Catalysts by Using Tga–Ftir Analysis,” Journal of Analytical and Applied Pyrolysis, 89 (2) pp. 171-77
[55] Wang, P., S. Zhan, H. Yu, X. Xue & N. Hong (2010), “The Effects of Temperature and Catalysts on the Pyrolysis of Industrial Wastes (Herb Residue),” Bioresour Technol, 101 (9) pp. 3236-41
[56] Wei Min, X. Sunney Xie, and Biman Bagchi (2008), “Two-Dimensional Reaction Free Energy Surfaces of Catalytic Reaction: Effects of Protein Conformational Dynamics on Enzyme Catalysis,” J. Phys. Chem. B, 112 pp. 454-66
[57] Weimin Peng, Qingyu Wu, Pingguan Tu, Nanming Zhao (2001), “Pyrolytic Characteristics of Microalgae as Renewable Energy Source Determined by Thermogravimetric Analysis,” Bioresource Technology, 80 pp. 1-7
[58] Xiao, J., Shen, L.H., Zheng, M., Wang, Z.M., Zhong, X.L., (2007), “Tg-Ftir Study on Catalytic Pyrolysis of Biomass,” J. Fuel Chem. Technol., 35 (3) pp. 215–20
[59] Yang, Haiping, Rong Yan, Hanping Chen, Dong Ho Lee & Chuguang Zheng (2007), “Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis,” Fuel, 86 (12-13) pp. 1781-88
[60] Yang, Y., T. Li, S. Jin, Y. Lin & H. Yang (2011), “Catalytic Pyrolysis of Tobacco Rob: Kinetic Study and Fuel Gas Produced,” Bioresour Technol, 102 (23) pp. 11027-33
[61] Zhang, C., F. Medina-Bolivar, S. Buswell & C. L. Cramer (2005), “Purification and Stabilization of Ricin B from Tobacco Hairy Root Culture Medium by Aqueous Two-Phase Extraction,” J Biotechnol, 117 (1) pp. 39-48
[62] Zhou, L., Z. M. Zong, S. R. Tang, Y. Zong, R. L. Xie, M. J. Ding, W. Zhao, X. F. Zhu, Z. L. Xia, L. Wu & X. Y. Wei (2009), “Ftir and Mass Spectral Analyses of an Upgraded Bio-Oil,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32 (4) pp. 370-75
[63] 吳復強 (1992) 田口品質工程,台北: 全威。
[64] 吳榮宗 (1989) 工業觸媒概論,國興出版社。
[65] 李輝煌 (2010) 田口方法 品質設計的原理與實務,高立圖書有限公司。
[66] 汪呈因 (1997) 特用作物學,台北: 茂昌圖書有限公司。
[67] 卓靜哲, 施良垣, 黃守仁,蘇世剛,何瑞文 (1996) 物理化學,三民書局。
[68] 張金海 (1994) 非均勻反應觸媒特性與實效應用,台灣復文興業股份有限公司。
[69] 陳文恆、郭家倫、黃文松、王嘉寶 (2007),「纖維酒精技術之發展」,農業生技產業季刊,第九期。
[70] 陳志慧 (2005),「蓖麻毒蛋白的研究與應用進展」,化學世界,第五期 pp.309-12。
[71] 楊義榮 (1985),「廢棄物加熱分解處理法」,pp.109-35。
[72] 蔡信行 (2000) 潤滑油脂產品及其應用 (上),嘉義市: 中國石油公司訓練所。
[73] 黎正中 (1993) 穩健設計之品質工程,台北: 台北圖書。
[74] 鍾清章 (1998) 田口式品質工程導論,台北: 中華民國品質學會。
[75] 蘇文銡 (1986) 工業觸媒原理及應用,新竹: 國興出版社。
校內:2016-07-08公開