| 研究生: |
周佳頤 Jou, Chia-Yi |
|---|---|
| 論文名稱: |
以應力控制動態三軸試驗探討液化地層之土壤參數折減 A Study on the Reduction of Soil Mechanical Parameters of Liquefiable Ground Using Stress-controlled Dynamic Triaxial Tests |
| 指導教授: |
柯永彥
Ko, Yung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 土壤液化 、動態三軸試驗 、抗液化安全係數 、超額孔隙水壓 、土壤參數折減 |
| 外文關鍵詞: | Soil liquefaction, Dynamic triaxial test, Factor of safety against liquefaction, Excess pore water pressure, Reduction of soil mechanical parameters |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國現行之耐震設計規範(內政部,2024)與基礎構造設計規範(內政部,2023)所採用之土壤參數折減係數(DE),係參考日本建築學會(1988, 2001)建議值,該折減係數係反映地盤反力係數之弱化行為,但其較過去工程界慣用之日本道路協會(1996)建議值為保守,適用性尚待探討。為此,本研究以循環應力控制之動態三軸試驗對土壤隨超額孔隙水壓激發而弱化之現象進行定量探討,利用越南石英砂製作三組不同相對密度(Dr)之試體(30%、40%、50%),在兩個有效覆土應力(50 kPa、100 kPa)之下進行1 Hz頻率之循環應力加載,除了建立液化阻抗曲線,亦即反覆剪應力比(cyclic stress ratio, CSR)與加載週數之關係外,亦觀察過程中超額孔隙水壓激發與剪力模數折減之趨勢。藉此,可建立抗液化安全係數FL與超額孔隙水壓比ru之關係,同時獲得弱化勁度比(δD,代表剪力模數之折減程度)隨孔隙水壓變化之趨勢。結果顯示,不同Dr下FL與ru之關係接近,當ru達0.6以上時FL已小於1。在ru<0.2之加載初期階段,δD會先隨加載週數略增;其後才轉為隨ru上升而降低,並於ru達0.7~0.8時降至近乎零。以上反映出土壤隨著孔隙水壓激發而弱化之行為,並以Dr較小時,δD降低趨勢較明顯。結合上述結果,進一步建立FL與土壤折減參數(DE)之關係,發現在FL小於0.98後DE大致小於0.01,與我國現行設計規範建議值比較後,可知日本建築學會之建議相對於本研究所得結果仍偏不保守。本研究基於一系列動態三軸試驗歸納液化地層之土壤參數折減特性,將可供現行規範後續檢討精進之參考。
This study investigated the degradation behavior of saturated sandy soils under cyclic loading using cyclic stress-controlled dynamic triaxial tests. In addition to establishing the liquefaction resistance curves representing the relationships of cyclic stress ratio (CSR) versus numbers of cycles, the development of excess pore water pressure and the reduction of shear modulus during loading were also observed. Through these tests, the relationship between the factor of safety against liquefaction (FL) and the excess pore pressure ratio(ru), as well as the variation of the degradation stiffness ratio δD (representing the reduction of shear modulus) with ru, can be established. The results show that the FL~ru relationships are similar at different relative densities (Dr); when ru > 0.6, FL generally falls below 1. In the early stage of cyclic loading (ru < 0.2), δD increases slightly with loading cycles; afterwards, δD decreases, as ru grows, eventually approaching zero when ru reaches 0.7~0.8. This indicates significant soil weakening due to excess pore pressure buildup, which is even more significant for a lower Dr . By integrating the above findings, the relationship between FL and the reduction factor of soil mechanical parameters (DE) can be constructed. It is observed that DE generally drops below 0.01 when FL< 0.98. Comparing the obtained DE values with the recommendations in current design codes in Taiwan, the latter are relatively unconservative.
1.內政部,建築物耐震設計規範及解說,台內營字第0940087319號令修正,2005。
2.內政部,建築物耐震設計規範及解說,台內營字第0990810250號令修正,2011。
3.內政部,建築物耐震設計規範及解說,台內國字第1130801422號令修正,2024。
4.內政部,建築物基礎構造設計規範,台內營字第9085629號函訂定,2001。
5.內政部,建築物基礎構造設計規範,台內營字第1120807974號令修正,2023。
6.周柏儒,利用動力三軸試驗探討土壤動態性質–剪應變–超額孔隙水壓間之關係,國立成功大學土木工程學系碩士論文,2022。
7.姜博翔,飽和砂土反覆單剪試驗與動態三軸試驗之比較研究,國立成功大學土木工程系碩士論文,2023。
8.張文忠,陳家漢,林子媛,李根榮,周仕勳,近斷層地震橋梁防災工程技術研究-本土土壤近斷層液化特性與樁基礎液化折減因子探討(子計畫五)(III),國家科學及技術委員會補助專題研究計畫成果報告,MOST 110-2625-M-006-012,2023。
9.張芷瑋,由縮尺模型樁側向載重試驗探討超額孔隙水壓激發造成之土壤阻抗弱化,國立成功大學土木工程系碩士論文,2025。
10.黃俊鴻、楊志文、譚志豪、陳正興,「集集地震土壤液化之調查與分析」,地工技術,第 77 期,51-64 頁,2000。
11.黃俊鴻,陳正興,莊長賢,「本土 HBF 土壤液化評估法之不確定性」,地工技術,第 133 期,第 77 -86 頁,2012。
12.日本道路協會,「道路橋示方書‧同解說-V耐震設計編」,1980。
13.日本道路協會,「道路橋示方書‧同解說-V耐震設計編」,1996。
14.日本建築學會,「建築基礎構造設計指針」,1998。
15.日本建築學會,「建築基礎構造設計指針」,2001。
16.岩崎敏男,常田賢一,木全俊雄,「地震時における砂質地盤の液状化判定法と耐震設計への適用に関する研究」,土研資料第1729號,日本建設省土木研究所,1981。
17.岩崎敏男,常田賢一,吉田精一,後藤勝志,「砂質地盤の流動化及び杭基礎構造物の動的応答特性に関する模型振動実験」,土研資料第1605號,日本建設省土木研究所,1980。
18.ASTM, “Standard test methods for the determination of the modulus and damping properties of soils using the cyclic triaxial apparatus”, ASTM D3999-11,2011.
19.ASTM, “Test method for load controlled cyclic triaxial strength of soil,” ASTM D5311-11,2011.
20.Brandenberg, S.J.. Behavior of Pile Foundations in Liquefied and Laterally Spreading Ground, PhD dissertation, Department of Civil and Environmental Engeering, University of California, Davis, 2005.
21.Beaty, M.H., Byrne, P.M., “An effective stress model for predicting liquefaction behaviour of sand”, Geotechnical Earthquake Engineering and Solid Dynamics, ASCE Geotechnical Special Publication 75, 766-777, 1998.
22.Casagrande, A., “Characteristics of cohesionless soils affecting the stability of slopes and earth fills”, J. Boston Society of Civil Engineers, 23(1), 13-32, 1936.
23.Chu, M.-C., & Ge, L., Stiffness degradation of coarse and fine sand mixtures due to cyclic loading. Engineering Geology, 288, Article 106155, 2021.
24.Cubrinovski, M., & Ishihara, K., Empirical correlation between SPT N-value and relative density for sandy soils. Soils and Foundations, 39(5), 61–71, 1999.
25.De Alba, P., Chan, C.K., Seed, H.B., Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests, Report No. EERC 75-14, Earthquake Engineering Research Center, University of California, Berkeley, 1985.
26.Dobry, R., Abdoun, T., “Cyclic shear strain needed for liquefaction triggering and assessment of overburden pressure factor K_σ,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 141(11), 04015047, 2015.
27.Hardin, B.O., Richart, F.E., “Elastic wave velocities in granular soil,” Journal of the Soil Mechanics and Foundations Division, ASCE, 89(1), 33-65, 1963.
28.Hwang J.H., Yang C.W., Chen C.H., “Investigations on soil liquefaction during the Chi-Chi earthquake,” Soils and Foundations, 43(6), 107-123, 2003.
29.Ishihara, K., “Soil behaviour in earthquake geotechnics”, 1996.
30.Ishihara, K., “Stability of natural deposits during earthquakes”, In International conference on soil mechanics and foundation engineering, 11, 321-376, 1985.
31.Ko, Y.Y., Tsai, C.C., Hwang, J.H., Hwang, Y.W, Ge, L., Chu, M.C., “Failure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquake, Taiwan,” Nature Hazards, 118(1), 55-94, 2023a.
32.Kokusho, T., “Cyclic triaxial test of dynamic soil properties for wide strain range,” Soils and Foundations, 20(2), 45-60, 1980.
33.Seed, H. B., Lee, K. L., “Liquefaction of saturated sands during cyclic loading”, Journal of the Soil Mechanics and Foundations Division, 92(6), 105-134, 1966.
34.Seed, H. B., “Soil moduli and damping factors for dynamic response analysis”, 1970.
35.Seed, H.B., and Idriss, I.M., ‘‘Simplified procedure for evaluating soil liquefaction potential,’’ Journal of the Geotechnical Engineering Division, ASCE, 97(9), 1249-1273, 1971.
36.Seed, H. B., Idriss, I. M., Ground Motions and Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute Monograph, Oakland, CA, 1982.
37.Seed, H.B., Martin, P.P., Lysmer, J., The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction, Report No. EERC 75-26, Earthquake Engineering Research Center, University of California, Berkeley, 1975.
38.Seed, H. B., Martin, P. P., Lysmer, J., “Pore-water pressure changes during soil liquefaction”, Journal of Geotechnical and Geoenvironmental Engineering, 102, 1976.
39.Seed, H. B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of the geotechnical engineering division, 105(2), 201-255, 1979.
40.Seed, H.B., Tokimatsu, K., Harder, L.F., & Chung, R.M., "Influence of SPT procedures in soil liquefaction resistance evaluations." Journal of Geotechnical Engineering, ASCE, 111(12), 1425–1445, 1985.
41.Seed, H. B., Wong, R. T., Idriss, I. M., Tokimatsu, K., “Moduli and damping factors for dynamic analyses of cohesionless soils”, Journal of geotechnical engineering, 112(11), 1016-1032, 1986.
42.Tsai, C.C., Hsu, S.Y., Wang, K.L., Yang, H.C., Chang, W.K., Chen, C.H., Hwang, Y.W., “Geotechnical reconnaissance of the 2016 ML6.6 Meinong earthquake in Taiwan,” Journal of Earthquake Engineering, 22(9), 1710-1736, 2018.
43.Tokimatsu, K., Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT N-value and fines content,” Soils and Foundations, 23(4), 56-74, 1983.
44.Vucetic, M., & Mortezaie, A. Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake Engineering, 70, 60–72, 2015.
校內:2029-08-01公開