簡易檢索 / 詳目顯示

研究生: 簡湘霖
Chien, Hsiang-Lin
論文名稱: 基於常態分佈的符號區間值變數與區間值時序的分析
Analysis of Symbolic Interval-Valued Variables and Interval Time Series Based on Normal Distribution
指導教授: 林良靖
Lin, Liang-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 區間值時間序列順序統計量符號區間值變數
外文關鍵詞: interval time series, order statistic, symbolic interval-valued data
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們建立了基於常態分佈的符號區間值變數的基本敘述統計量,包括平均數,變異數及相關係數。此外,我們還提出了自我區間迴歸 (AIR) 模型來配適區間值時間序列過程。把區間值視為常態分佈的最大和最小順序統計量並且推導出上述模型的概似函數。為了滿足隨機變異,我們將 AIR 模型與自我迴歸異質性變異 (ARCH) 模型結合。模擬結果呈現了估計量的準確性。在實際資料分析中,考慮兩組數據:空氣品質監測資料和 S&P 500 指數。比較每日平均值和每日區間值做主成分分析的負荷量差異。對於 S&P 500 指數,AIR-ARCH 模型的一步預測最高價和最低價比其他方法好,如向量自我迴歸模型和k-最近鄰居方法。

    In this study, we establish the fundamental statistical inferences for normality distributed symbolic interval-valued variables. They include the mean, variance and correlation. Further, we propose an auto-interval-regressive (AIR) model to characterize the interval time series process. The likelihood functions of above models are derived by treating the intervals as the largest and smallest order statistics of a normal distribution. To capture the stochastic volatility, we combine the AIR model with auto-regressive conditional heteroscedasticity (ARCH) model. Simulation studies are performed to demonstrate the accuracy of the estimators. In real application, we consider two data sets: the air quality monitoring data and S&P 500 index. We compare the differences of the loadings of principal component analysis based on daily mean and daily interval-valued data. For S&P 500 index, the 1-step predictive high and low prices based on AIR-ARCH model dominate the alternatives, such as vector autoregressive model and k-nearest neighbors method.

    摘要 ... i Abstract ... ii 誌謝 ... iii Table of Contents ... iv List of Tables ... vi List of Figures ... vii Chapter 1. Introduction ... 1 Chapter 2. Notations and Literature Review ... 4 2.1. Notations ... 4 2.2. Descriptive Statistics ... 4 2.3. Regression Analysis ... 5 Chapter 3. Descriptive Statistics of Symbolic Interval-Valued Variable ... 8 3.1. Univariate Descriptive Statistics ... 8 3.2. Bivariate Descriptive Statistics ... 9 Chapter 4. AIR Model ... 11 4.1. AIR Model ... 11 4.2. AIR-ARCH Model ... 12 Chapter 5. Simulation Results ... 14 5.1. Simulation Result of Univariate Descriptive Statistics ... 14 5.2. Simulation Result of Bivariate Descriptive Statistics ... 15 5.3. Simulation Result of AIR Model ... 17 5.3.1. AIR Model ... 17 5.3.2. AIR-ARCH Model ... 19 Chapter 6. Real Data Analysis ... 21 6.1. Air Quality Monitoring Data ... 21 6.2. S&P 500 Index ... 24 6.2.1. Results ... 25 Chapter 7. Conclusion and Future Study ... 29 References ... 30 Appendix A. ... 32 Appendix B. ... 40

    1. Arroyo, J., González-Rivera, G. and Maté, C. (2011). Forecasting with Interval and Histogram Data: Some Financial Applications. Handbook of Empirical Economics and Finance, 247-279.
    2. Bertrand, P. and Goupil, F. (1999). Descriptive statistics for symbolic data. Symbolic Official Data Analysis, Springer, 103–124.
    3. Billard, L. and Diday, E. (2000). Regression Analysis for Interval-Valued Data. Data Analysis, Classification, and Related Methods, Springer, 369-374.
    4. Billard, L. and Diday, E. (2002). Symbolic Regression Analysis. Classification, Clustering, and Data Analysis, Springer, 281-288.
    5. Billard, L. and Diday, E. (2003). From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis. Journal of the American Statistical Association, 98(462), 470-487.
    6. Billard, L. and Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data Mining, 1st ed, Chichester, UK: John Wiley & Sons.
    7. Blom, G. (1958). Statistical Estimates and Transformed Beta-Variables. Wiley.
    8. Brito,P (2014). Symbolic Data Analysis: another look at the interaction of Data Mining and Statistics. WIREs Data Mining Knowl Discov, 4, 281-295.
    9. Brito, P. and Duarte Silva, A.P. (2012). Modelling interval data with Normal and Skew Normal distributions. Journal of Applied Statistics, 39(1), 3-20.
    10. Douzal-Chouakria, A., Billard, L. and Diday, E (2011). Principal Component Analysis for Inter-Valued Observations. Statistical Analysis and Data Mining, 4(2), 229-246.
    11. Gibbs, A.L. and Su, F.E. (2002). On Choosing and Bounding Probability Metrics. International Statistical Review, 70(3), 419-435.
    12. Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzionc. Inst. Ital. Attuari Giorn, 1st ed, 4, 1–11.
    13. Lauro, C. and Plumbo, P. (2005). Principal Component Analysis for non-precise data. New developments in Classification and Data analysis, 173-184.
    14. Lima Neto, E.A. and De Carvalho, F.A.T. (2008). Centre and Range method for fitting a linear regression model to symbolic interval data. Computational Statistics & Data Analysis, 52(3), 1500-1515.
    15. Lin, L.-C., Chen, Y., Pan, G. and Spokoiny V. (2018). Efficient and positive semidefinite pre-averaging realized covariance estimator. manuscript.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE