| 研究生: |
楊詠涵 Yang, Yung-Han |
|---|---|
| 論文名稱: |
刪除SMC蛋白質的布魯氏錐蟲PF20在哺乳動物上皮細胞之研究 The study of SMC deleted tbPF20 in mammalian epithelial cell |
| 指導教授: |
胥直利
Hsu, Chih-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 鞭毛癱瘓蛋白 、布魯氏錐蟲 、鞭毛 、微管 、中心體 |
| 外文關鍵詞: | TbPF20, Trypanosoma brucei, flagella, microtubule, centrosome |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TbPF20是布魯氏錐蟲(Trypanosoma brucei)的鞭毛蛋白同源物。RNAi實驗顯示出TbPF20是布魯氏錐蟲生長以及鞭毛功能的必須基因,tbPF20包含第160到230個胺基酸的 SMC功能區以及位於C端第301到589個胺基酸的WD40重複序列,建構出剔除SMC功能區,但包含WD40重複序列的PF20突變蛋白並接上eGFP標記質體,稱之為pSACⅡ,可以表現在哺乳動物上皮細胞。另一個包含完整的WD40重複序列的質體pWDN。本實驗中,這樣截短化(truncated)的tbPF20可被西方墨點法所偵測,也都對細胞具毒性。將pSACⅡ轉染進MDCK細胞中可以產生兩種螢光蛋白族群,一種會表現出精緻的點狀,細緻的沿著細胞邊緣圍住整顆細胞。另一種表現在整顆細胞。點狀族群之螢光細胞在轉染後24小時便死亡。點狀蛋白與肌動蛋白、偽足和細胞黏著分子並沒有相關性。表現SACⅡ與WDN螢光蛋白的細胞微管卻在細胞邊緣表現出捲曲以及形成束狀,而點狀族群的蛋白表現還與劍蛋白p60共同存在的現象,均質狀族群則沒有。由曠時螢光顯微鏡以及metamorph軟體可以計算出,點狀族群與均質狀族群的移動距離與速率都會下降。不僅如此,SACⅡ螢光蛋白細胞經由有絲分裂阻滯劑nocodazole處理16小時後,DNA濃縮百分比小於1%,且沒有核膜破裂與中心體分離的現象。看來,SACⅡ以及WDN蛋白均會擾亂微管以及細胞週期,使中心體無法分離引起 G2/M 停滯造成細胞死亡。這些蛋白如何透過微管系統造成中心體無法分離的現象,進而影響有絲分裂期,需要進一步的討論與研究。
Gene TbPF20 is a PF20 ortholog from flagellate parasite Trypanosoma brucei. RNAi experiment shows TbPF20 is essential both for flagellum function and for parasite proliferation. It contains both SMC domain from residue 160 to 230 and a WD domain with 7 repeats, which locates entire C terminal half from residue 301 to 589. A PF20 deletion mutant plasmid (pSACⅡ) bearing WD repeats with eGFP tag readily expressed in mammalian cells was constructed by deleting SMC domain. The other PF20 deletion construct was pWDN, which comprises the whole WD repeats only. These truncated TbPF20 mutants were transfected into mammalian MDCK cells separately and the corresponding proteins were detected by Western blotting. Both DNA constructs conferred cytotoxicity in MDCK. Interestingly, two populations of fluorescent protein patterns were identified in MDCK cells transfected with pSAC. One gave delicate puncta, thin thread-like beads along cell edges and the other homogeneous throughout. The puncta were not in line with cortical actin, lamellapodia and cell adhesion molecular. Both pSACII and pWDN transfectant cells reduced their mobility in terms of speed and distance from control cells ,respectively as calculated from time lapse data with metamorph program. Both constructs blocked cell cycle progression at the centrosome disjunction step. Both TbPF20 derivative transfectants gave less than 1% round-up shape after 16hr nocodazole treatment in contrast to more than 90% that of the control cells. All these data pointed cytoskeleton abnormality. Phalloidin, E-cadherin, β-catenin stainings all showed no obvious difference from control cells. However, microtubules were drastically abnormal in over 80% cells with SACII or WDN. Microtubules in these cells showed bundling and curling or obviously dimished as the effect of heavy microtubule severing. Confocal microscopy method showed that indeed the thin-thread beads like puncta from pSACII colocalized with Katanin p60, which gives similar pattern of microtubule system upon RNAi Katanin. The homogenous population of pSACII or pWDN did not give colocalization with Katanin p60. From time lapse data, these puncta cell population gave PI staining 24hr post transfection earlier than that of the homogenous SACII or WDN population. More, SacⅡ containing cells showed uncondensed DNA upon nocodazole treatment, and nuclear envelope were not breakdown to disperse into cytoplasm as judged by lamin A/C staining. On the whole, the TbPF20 derivate proteins disorganized microtubules as well as perturbed cell cycle progression at centrosome disjunction to cause G2/M arrest and, thereafter, cytotoxicity. How these proteins mediate the interaction with microtubule system to the centrosome disjunction and further mitosis events awaits further investigation.
1. Absalon, S., T. Blisnick, L. Kohl, G. Toutirais, G. Dore, D. Julkowska, A. Tavenet, and P. Bastin. 2008. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Molecular biology of the cell 19:929-944.
2. Absalon, S., L. Kohl, C. Branche, T. Blisnick, G. Toutirais, F. Rusconi, J. Cosson, M. Bonhivers, D. Robinson, and P. Bastin. 2007. Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS One 2:e437.
3. Badano, J. L., N. Mitsuma, P. L. Beales, and N. Katsanis. 2006. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125-148.
4. Barr, F. A., H. H. Sillje, and E. A. Nigg. 2004. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5:429-440.
5. Bettencourt-Dias, M., F. Hildebrandt, D. Pellman, G. Woods, and S. A. Godinho. 2011. Centrosomes and cilia in human disease. Trends Genet 27:307-315.
6. Branche, C., L. Kohl, G. Toutirais, J. Buisson, J. Cosson, and P. Bastin. 2006. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 119:3443-3455.
7. Buster, D., K. McNally, and F. J. McNally. 2002. Katanin inhibition prevents the redistribution of gamma-tubulin at mitosis. J Cell Sci 115:1083-1092.
8. Casanova, M., L. Crobu, C. Blaineau, N. Bourgeois, P. Bastien, and M. Pages. 2009. Microtubule-severing proteins are involved in flagellar length control and mitosis in Trypanosomatids. Mol Microbiol 71:1353-1370.
9. Cooper, S. 2003. Rethinking synchronization of mammalian cells for cell cycle analysis. Cell Mol Life Sci 60:1099-1106.
10. Cunha-Ferreira, I., I. Bento, and M. Bettencourt-Dias. 2009. From zero to many: control of centriole number in development and disease. Traffic 10:482-498.
11. Doxsey, S. 2001. Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2:688-698.
12. Durand-Dubief, M., L. Kohl, and P. Bastin. 2003. Efficiency and specificity of RNA interference generated by intra- and intermolecular double stranded RNA in Trypanosoma brucei. Mol Biochem Parasitol 129:11-21.
13. Dutcher, S. K. 1995. Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet 11:398-404.
14. Dymek, E. E., P. A. Lefebvre, and E. F. Smith. 2004. PF15p is the chlamydomonas homologue of the Katanin p80 subunit and is required for assembly of flagellar central microtubules. Eukaryot Cell 3:870-879.
15. Dymek, E. E., and E. F. Smith. 2012. PF19 encodes the catalytic subunit of katanin, p60, and is required for assembly of the flagellar central apparatus in Chlamydomonas. J Cell Sci.
16. Ehrhardt, D. W., and S. L. Shaw. 2006. Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57:859-875.
17. Feng, Y., C. Zhang, Q. Luo, X. Wei, B. Jiang, H. Zhu, L. Zhang, L. Jiang, M. Liu, and X. Xiao. 2012. A novel WD-repeat protein, WDR26, inhibits apoptosis of cardiomyocytes induced by oxidative stress. Free Radic Res 46:777-784.
18. Fliegauf, M., T. Benzing, and H. Omran. 2007. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880-893.
19. Fong, H. K., J. B. Hurley, R. S. Hopkins, R. Miake-Lye, M. S. Johnson, R. F. Doolittle, and M. I. Simon. 1986. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci U S A 83:2162-2166.
20. Gao, X., Z. Chen, J. Zhang, X. Li, G. Chen, and C. Wu. 2012. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta 235:713-727.
21. Garcia-Higuera, I., C. Gaitatzes, T. F. Smith, and E. J. Neer. 1998. Folding a WD repeat propeller. Role of highly conserved aspartic acid residues in the G protein beta subunit and Sec13. J Biol Chem 273:9041-9049.
22. Grab, D. J., and P. G. Kennedy. 2008. Traversal of human and animal trypanosomes across the blood-brain barrier. J Neurovirol 14:344-351.
23. Hames, R. S., R. Hames, S. L. Prosser, U. Euteneuer, C. A. Lopes, W. Moore, H. R. Woodland, and A. M. Fry. 2008. Pix1 and Pix2 are novel WD40 microtubule-associated proteins that colocalize with mitochondria in Xenopus germ plasm and centrosomes in human cells. Exp Cell Res 314:574-589.
24. Heald, R., M. McLoughlin, and F. McKeon. 1993. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74:463-474.
25. Hildebrandt, F., T. Benzing, and N. Katsanis. 2011. Ciliopathies. N Engl J Med 364:1533-1543.
26. Hsieh, P. C., M. L. Chiang, J. C. Chang, Y. T. Yan, F. F. Wang, and Y. C. Chou. 2012. DDA3 Stabilizes Microtubules and Suppresses Neurite Formation. J Cell Sci.
27. Ibanez-Tallon, I., N. Heintz, and H. Omran. 2003. To beat or not to beat: roles of cilia in development and disease. Human molecular genetics 12 Spec No 1:R27-35.
28. Jackman, J., and P. M. O'Connor. 2001. Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol Chapter 8:Unit 8 3.
29. Janda, L., P. Tichy, J. Spizek, and M. Petricek. 1996. A deduced Thermomonospora curvata protein containing serine/threonine protein kinase and WD-repeat domains. J Bacteriol 178:1487-1489.
30. Janosi, I. M., D. Chretien, and H. Flyvbjerg. 2002. Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophysical journal 83:1317-1330.
31. Jordan, M. A., D. Walker, M. de Arruda, T. Barlozzari, and D. Panda. 1998. Suppression of microtubule dynamics by binding of cemadotin to tubulin: possible mechanism for its antitumor action. Biochemistry 37:17571-17578.
32. Karabay, A., W. Yu, J. M. Solowska, D. H. Baird, and P. W. Baas. 2004. Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J Neurosci 24:5778-5788.
33. Keller, L. C., S. Geimer, E. Romijn, J. Yates, 3rd, I. Zamora, and W. F. Marshall. 2009. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Molecular biology of the cell 20:1150-1166.
34. Kohl, L., D. Robinson, and P. Bastin. 2003. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. Embo J 22:5336-5346.
35. Li, D., and R. Roberts. 2001. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085-2097.
36. Lundkvist, G. B., K. Kristensson, and M. Bentivoglio. 2004. Why trypanosomes cause sleeping sickness. Physiology (Bethesda) 19:198-206.
37. Mardin, B. R., C. Lange, J. E. Baxter, T. Hardy, S. R. Scholz, A. M. Fry, and E. Schiebel. 2010. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. Nature cell biology 12:1166-1176.
38. Margalit, A., S. Vlcek, Y. Gruenbaum, and R. Foisner. 2005. Breaking and making of the nuclear envelope. J Cell Biochem 95:454-465.
39. McNally, K., A. Audhya, K. Oegema, and F. J. McNally. 2006. Katanin controls mitotic and meiotic spindle length. J Cell Biol 175:881-891.
40. Nagarkatti-Gude, D. R., R. Jaimez, S. C. Henderson, M. E. Teves, Z. Zhang, and J. F. Strauss, 3rd. 2011. Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression. PLoS One 6:e20625.
41. Neer, E. J., C. J. Schmidt, R. Nambudripad, and T. F. Smith. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297-300.
42. Nigg, E. A. 2002. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815-825.
43. Nogales, E. 2001. Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 30:397-420.
44. Ogawa, T., R. Nitta, Y. Okada, and N. Hirokawa. 2004. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116:591-602.
45. Oshimori, N., M. Ohsugi, and T. Yamamoto. 2006. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nature cell biology 8:1095-1101.
46. Pazour, G. J., B. L. Dickert, Y. Vucica, E. S. Seeley, J. L. Rosenbaum, G. B. Witman, and D. G. Cole. 2000. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709-718.
47. Pines, J., and T. Hunter. 1991. Cyclin-dependent kinases: a new cell cycle motif? Trends Cell Biol 1:117-121.
48. Ralston, K. S., A. G. Lerner, D. R. Diener, and K. L. Hill. 2006. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5:696-711.
49. Roll-Mecak, A., and F. J. McNally. 2010. Microtubule-severing enzymes. Curr Opin Cell Biol 22:96-103.
50. Satir, P. 1995. Landmarks in cilia research from Leeuwenhoek to us. Cell Motil Cytoskeleton 32:90-94.
51. Smertenko, A., N. Saleh, H. Igarashi, H. Mori, I. Hauser-Hahn, C. J. Jiang, S. Sonobe, C. W. Lloyd, and P. J. Hussey. 2000. A new class of microtubule-associated proteins in plants. Nature cell biology 2:750-753.
52. Smith, E., N. Hegarat, C. Vesely, I. Roseboom, C. Larch, H. Streicher, K. Straatman, H. Flynn, M. Skehel, T. Hirota, R. Kuriyama, and H. Hochegger. 2011. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. Embo J 30:2233-2245.
53. Smith, E. F., and P. A. Lefebvre. 1997. PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. Molecular biology of the cell 8:455-467.
54. Stirnimann, C. U., E. Petsalaki, R. B. Russell, and C. W. Muller. 2010. WD40 proteins propel cellular networks. Trends Biochem Sci 35:565-574.
55. Sullivan, M., and D. O. Morgan. 2007. Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8:894-903.
56. Vallet, A. E., A. Verschueren, P. Petiot, N. Vandenberghe, M. Nicolino, S. Roman, J. Pouget, and C. Vial. 2012. Neurological features in adult Triple-A (Allgrove) syndrome. J Neurol 259:39-46.
57. Vaughan, S. 2010. Assembly of the flagellum and its role in cell morphogenesis in Trypanosoma brucei. Curr Opin Microbiol 13:453-458.
58. Vaughan, S., and H. R. Dawe. 2011. Common themes in centriole and centrosome movements. Trends Cell Biol 21:57-66.
59. Vickerman, K. 1969. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163-193.
60. Wang, W., V. F. Lundin, I. Millan, A. Zeng, X. Chen, J. Yang, E. Allen, N. Chen, G. Bach, A. Hsu, M. T. Maloney, M. Kapur, and Y. Yang. 2012. Nemitin, a novel Map8/Map1s interacting protein with Wd40 repeats. PLoS One 7:e33094.
61. Wei, X., L. Song, L. Jiang, G. Wang, X. Luo, B. Zhang, and X. Xiao. 2010. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells. Biochem Biophys Res Commun 393:860-863.
62. Williams, L. R., and B. L. Vickerman. 1976. Effects of transcendental meditation on fine motor skill. Percept Mot Skills 42:607-613.
63. Ye, X., Y. C. Lee, M. Choueiri, K. Chu, C. F. Huang, W. W. Tsai, R. Kobayashi, C. J. Logothetis, L. Y. Yu-Lee, and S. H. Lin. 2012. Aberrant expression of katanin p60 in prostate cancer bone metastasis. The Prostate 72:291-300.
64. Yu, W., J. M. Solowska, L. Qiang, A. Karabay, D. Baird, and P. W. Baas. 2005. Regulation of microtubule severing by katanin subunits during neuronal development. J Neurosci 25:5573-5583.
65. Zeng, C. J., Y. R. Lee, and B. Liu. 2009. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129-1140.
66. Zhang, D., K. D. Grode, S. F. Stewman, J. D. Diaz-Valencia, E. Liebling, U. Rath, T. Riera, J. D. Currie, D. W. Buster, A. B. Asenjo, H. J. Sosa, J. L. Ross, A. Ma, S. L. Rogers, and D. J. Sharp. 2011. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nature cell biology 13:361-370.
67. Zhang, D., G. C. Rogers, D. W. Buster, and D. J. Sharp. 2007. Three microtubule severing enzymes contribute to the "Pacman-flux" machinery that moves chromosomes. J Cell Biol 177:231-242.
68. Zhang, Z., B. H. Jones, W. Tang, S. B. Moss, Z. Wei, C. Ho, M. Pollack, E. Horowitz, J. Bennett, M. E. Baker, and J. F. Strauss, 3rd. 2005. Dissecting the axoneme interactome: the mammalian orthologue of Chlamydomonas PF6 interacts with sperm-associated antigen 6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Proteomics 4:914-923.
69. Zhang, Z., I. Kostetskii, S. B. Moss, B. H. Jones, C. Ho, H. Wang, T. Kishida, G. L. Gerton, G. L. Radice, and J. F. Strauss, 3rd. 2004. Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis. Proc Natl Acad Sci U S A 101:12946-12951.
70. Zhang, Z., I. Kostetskii, W. Tang, L. Haig-Ladewig, R. Sapiro, Z. Wei, A. M. Patel, J. Bennett, G. L. Gerton, S. B. Moss, G. L. Radice, and J. F. Strauss, 3rd. 2006. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod 74:751-759.
71. Zhang, Z., R. Sapiro, D. Kapfhamer, M. Bucan, J. Bray, V. Chennathukuzhi, P. McNamara, A. Curtis, M. Zhang, E. J. Blanchette-Mackie, and J. F. Strauss, 3rd. 2002. A sperm-associated WD repeat protein orthologous to Chlamydomonas PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Biol 22:7993-8004.
72. Zhang, Z., X. Shen, B. H. Jones, B. Xu, J. C. Herr, and J. F. Strauss, 3rd. 2008. Phosphorylation of mouse sperm axoneme central apparatus protein SPAG16L by a testis-specific kinase, TSSK2. Biol Reprod 79:75-83.