| 研究生: |
陳重谷 Chen, Chung-Gu |
|---|---|
| 論文名稱: |
利用原子力顯微鏡辨識突變PSGL-1及外鞘膜蛋白之間專一性結合力 AFM applied for specific bonding-force recognition between mutated PSGL-1 and EV71 viral envelope |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 腸病毒71型 、病毒蛋白1 、突變PSGL-1 、解離力 、專一性鍵結 |
| 外文關鍵詞: | EV71, VP1, mutated PSGL-1, unbinding force, specific bonding |
| 相關次數: | 點閱:972 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年在亞洲地區流行的腸病毒71型(EV71)是一種生長於腸道的RNA病毒,是一種手足口症(hand-foot-mouth disease,HFMD),這類感染病出現神經系統的病徵如抽蓄、肢體麻痺、腦膜炎及呼吸困難等症狀。有些研究已經指出EV71的受體P-selectin glycoprotein ligand-1 (PSGL-1)一旦硫化之後確實和EV71的結合能力會增加,但是在PSGL-1的序列當中,能夠被硫酸化和EV71結合的酪氨酸(Tyrosine, Y)有三個(酪氨酸-46,48,51),目前推測此三個位置可能在硫酸化後和EV71的反應能力會有所不同。為了探討這三個酪氨酸對外鞘膜蛋白VP1的結合能力,本研究將使用苯丙胺酸(Phenylanine, F)取代酪氨酸。本研究使用原子力顯微鏡(Atomic Force Microscopy , AFM)作為量測EV71的外鞘膜蛋白VP1和PSGL-1之間解離力的工具,使用自組裝單分子層製程,VP1和突變的PSGL-1蛋白便可以分別固定於AFM探針以及矽基板之上,在使用原子力顯微鏡在緩衝液中量測兩種蛋白質的解離力。不論是抗體還是VP1的量測結果可知硫酸化的PSGL-1 (46, 48F)的解離力明顯大於硫酸化PSGL-1 (48, 51F)以及硫酸化PSGL-1 (46, 51F)。此結果指出當酪胺酸-51被苯丙胺酸取代而無法硫酸化時會使得硫酸化PSGL-1和VP1的反應性明顯下降,證實酪氨酸-51是最重要的因為只要能組止它被硫酸化,便可以減少PSGL-1和腸病毒71的反應性。原子力顯微鏡能夠利用力學曲線可以分辨突變PSGL-1的反應性,所以適合量測這種與EV71相關的研究。
Enteroviruses 71 (EV71) are a genus of positive-sense single-stranded RNA viruses which are notable as ones of the major causative agents associated with hand, foot and mouth diseases (hand-foot-mouth disease, HFMD) and also associated with severe central nervous system diseases like twitch, paralysis, meningitis and difficulty breathing, etc. It has been indicated that once the receptor of EV71, P-selectin glycoprotein ligand-1 (PSGL-1) is sulfated, the binding ability with EV71 tends to be increased. There are three tyrosines (tyrosine-46, 48, and 51) in PSGL-1, while three different positions of tyrosines with varied binding abilities to EV71 as PSGL-1 is sulfated. In order to study the different binding abilities of three tyrosines with outer sheath protein Viral Protein 1 (VP1) of EV71, three substitute tyrosines replaced by phenylalanine are studied. Atomic force microscopy (AFM) was utilized as force apparatus to measure the unbinding force between VP1 of and PSGL-1. At first, VP1 and mutated PSGL-1 proteins were immobilized on AFM tip and Si substrate, respectively. The unbinding forces between these two proteins were then measured in a buffer condition. Whether reacted with antibody or VP1, the unbinding forces of sulfated PSGL-1 (46, 48F) were significantly larger than sulfated PSGL-1 (48, 51F) as well as sulfated PSGL-1 (46, 51F). The results indicate that the reactivity between sulfated PSGL-1 and VP1 obviously decreases as tyrosine-51 is replaced by phenylalanine. As a consequence, tyrosine-51 exhibits the major importance because preventing it from being sulfated will reduce the reactivity of PSGL-1 with EV71. In this study, AFM study is competent to tell the difference of reactivity of PSGL-1 mutations through AFM force curves and is therefore promising forEV71 related studies based on the mutated PSGL-1 and VP1.
[1] Z. Laszik, P. J. Jansen, R. D. Cummings, T. F. Tedder, R. P. McEver, and K. L. Moore, “P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells”, Blood, Vol. 88, 3010–3021, 1996.
[2] D. Sako, X. Chang, K. M. Barone, G. Vachino, H. M. White, G. Shaw, G. M. Veldman, K. M. Bean, T. J. Ahern, B. Furie, D. A. Cumming, and G. R. Larsen, “Expression cloning of a functional glycoprotein ligand for P-selectin”, Cell, Vol. 75, 1179–1186, 1993.
[3] W. S. Somers, J. Tang, G. D. Shaw, and R. T. Camphausen, “Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1”, Cell, Vol. 103, 467–479, 2000.
[4] K. P. Patel, and J. M. Bergelson, “Receptors identified for hand, foot and mouth virus”, Nature Medicine 15, 728 – 729, 2009.
[5] A. P. Lothrop, M. P. Torres, and S. M. Fuchs, “Deciphering post translational modification codes”, FEBS Letters, Vol. 587, 1247–1257, 2013.
[6] U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H.J. Güntherodt, “Specific antigen/antibody interactions measured by force microscopy”, Biophysical Journal, Vol. 70, 2437-2441, 1996
[7] W. Zhang, A. G. Stack, and Y. S. Chen, “Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM”, Colloids and Surfaces B: Biointerfaces, Vol. 82, 316–324, 2011
[8] Y. M. Wang “Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy”, Doctoral dissertation, Taiwan University, 2006.
[9] Y. Nishimura, M. Shimojima, Y. Tano, T. Miyamura, and T. Wakita, “Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus71 ”,Nat Med 15, Vol. 794–797, 2009.
[10] Y. Nishimura, T. Wakita, and H. Shimizu, “Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection”, PLoS Pathog 6, 2010.
[11] Y. Nishimura, H. Lee, S. Hafenstein, C. Kataoka, T. Wakita, J. M. Bergelson and H. Shimizu, “Enterovirus 71 Binding to PSGL-1 on Leukocytes: VP1-145 Acts as a Molecular Switch to Control Receptor Interaction”, PLoS Pathog 9(7), 2013.
[12] S. Lin, Y. M. Wang, L. S. Huang, C. W. Lin, S. M. Hsu, and C. K. Lee, “Dynamic response of glucagon/anti-glucagon pairs to pulling velocity and pH studied by atomic force microscopy”, Biosensors and Bioelectronics, Vol. 22(6), 1013-1019, 2007.
[13] McEver, R. P., and C. Zhu, “Rolling cell adhesion”, Annu. Rev. Cell Dev., Biol. 26:363–396, 2010.
[14] Zhu, C., T. Yago, and R. P. McEver, “Mechanisms for flowenhanced cell adhesion”, Ann. Biomed. Eng. 36:604–621, 2008.
[15] Wagner, D. D., and P. S. Frenette“The vessel wall and its interactions”, Blood. 111:5271–5281, 2008.
[16] Zhu, C., M. Long, and P. Bongrand, “Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues”, Ann. Biomed., Eng. 30:305–314, 2002.
[17] Ramachandran, V., M. U. Nollert, and R. P. McEver, “Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin”, Proc. Natl. Acad. Sci., USA. 96:13771–13776, 1999.
[18] Liu, W., V. Ramachandran, and R. P. McEver, “Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin”, J. Biol.,Chem. 273:7078–7087, 1998.
[19] Pouyani, T., and B. Seed, “PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus”, Cell. , 83:333–343, 1995.
[20] Bruker Customer Facing, “Dimension FastScan”, 2, 2011.
[21] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 8, 2000.
[22] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 9, 2000.
[23] C. B. Prater, P. G. Maivald, K. J. Kjoller, and M. G. Heaton, “TappingMode Imaging Applications and Technology”, 2004.
[24] Bruker Customer Facing, “Peak Force - QNM”, 6, 2011.
[25] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 37, 2000.
[26] Y. M. Wang “Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy”, Doctoral dissertation, Taiwan University, 2006.
[27] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 45, 2000.
[28] S. B. Velegol, and B. E. Logan, “Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves”, Langmuir, Vol. 18, 5256-5262, 2002.
[29] A. Bendavid, P. J. Martina, A. Jamtinga, and H. Takikawab, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition”, Thin Solid Films, Vol. 355-356, 6-11, 1999.
[30] H. Mostéfa-Sba, B. Domenichini, and S. Bourgeois, ”Iron deposition on TiO2(110): effect of the surface stoichiometry and roughness”, Surface Science Reports, Vol. 437, 107-115, 1999.
[31] K. W. Lee, S. Lee, and J. W. Park, ”Electroplated Cu and sputtered Ta crystallographic texture degradation in Cu/Ta/SiOF layered structures”, Journal of The Electrochemical Society, Vol. 148, C131-135, 2001.
[32] H. J. Grabke “Surface and interface segregation in the oxidation of metals”, Surface and Interface Analysis, Vol. 30, 112, 2000.
[33] C. Y. Rha, W. S. Kim, J. W. Kim, and H. H. Park, “Relationship between microstructure and electrochemical characteristics in steel corrosion”, Applied Surface Science, Vol. 169, 587-592 , 2001.
[34] S. S. Datwani, R. A. Vijayendran, E. Johnson, and S. A. Biondi, “Mixed Alkanethiol Self-Assembled Monolayers as Substrate for Microarraying Applications”, Langmuir, Vol. 20, 4970-4976, 2004.
[35] D. Losic, J. G. Shapter, and J. J. Gooding, “Influence of Surface Topography on Alkanethiol SAMs Assembled from Solution and by Microcontact Printing”, Langmuir, Vol. 17, 3307-3316, 2001.
[36] J. Lahiri, E. Ostuni, and G. M. Whitesides, “Patterning Ligands on Reactive SAMs by Microcontact printing”, Langmuir, Vol. 15, 2055-2066, 1999.
[37] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial Chemistries for Nanoscale Transfer Printing”, Journal of the American Chemical Society, Vol. 124(26), 7655, 2002
[38] Y. Tai, A. Shaporenko, M. Grunze, and M. Zharnikov, “Effect of Irradiation Dose in Making an Insulator from a Self-Assembled Monolayer”, The Journal of Physical Chemistry B, Vol. 109, 19411-19415.
[39] Y. Tai, A. Shaporenko, W. Eck, M. Grunze, and M. Zharnikov, “Abrupt change in the structure of self-assembled monolayers upon metal evaporation”, Applied Physics Letter, Vol. 85, 6257-6259, 2004.
[40] A. Ulman, “An Introduction to Ultrathin Organic Film From Langmuir-Blodgett to Self-Assembly”, 1991.
[41] C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles, and R. C. Salvarezza, “Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)”, Journal of physics: Condensed Matter, Vol. 18, R867-R900, 2006.
[42] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, ”Comparison of the structures and wetting properties of self-assemble monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold”, Journal of the American Chemical Society, Vol. 113, 7152-7167, 1991.
[43] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, and M. Grunze, “Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resist for nanolithography”, Applied Physics Letters, Vol. 75, 2401-2403, 1999.
[44] M. B. Ali, F. Bessueille, J. M. Chovelon, A. Abdelghani, N. J. Renault, M. A. Maaref, and C. Martelet, “Use of ultra-thin organic silane films for the improvement of gold adhesion to the silicon dioxide wafers for (bio)sensor applications”, Materials Science and Engineering C, Vol. 28, 628-632, 2008.
[45] P. Pallavicini, A. Taglietti, G. Dacarro, Y. Antonio, D. Fernandez, M. Galli, P. Grisoli, M. Patrini, G. S. De Magistris, and R. Zanoni, “Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity”, Journal of Colloid and Interface Science, Vol. 350, 110-116, 2010.
[46] M. Tanaka, M. Komagata, M. Tsukada, and H. Kamiya, “Evaluation of the particle–particle interactions in a toner by colloid probe AFM”, Powder Technology, Vol. 183, 273–281, 2008.
[47] Bruker Customer Facing, “Peak Force - QNM”, 6, 2011.
[48] I. Sokolov, M. E. Dokukin, and N. V. Guz, “Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments”, Methods 60, 202–213, 2013.
[49] B. Xiao, C. Tong, X. Jia, R. Guo, S. Lu, Y. Zhang, R. P. McEver, C. Zhu, and M. Long, “Tyrosine Replacement of PSGL-1 Reduces Association Kinetics with P- and L-Selectin on the Cell Membrane”, Biophysical Journal, Vol.103, 777–785, 2012.
[50] A. Alessandrini, and P. Facci, “AFM: a versatile tool in biophysics”, Measurement Science and Technology, Vol. 16, R65-R92, 2005
[51] C. T. Lim, E. H. Zhou, A. Li, S. R. K. Vedula, and H. X. Fu, “Experimental techniques for single cell and single molecule biomechanics”, Materials Science and Engineering C, Vol. 26, 1278-1288, 2006.
[52] C. K. Lee, Y. M. Wang, L. S. Huang, and S. M. Lin, “Atomic force microscopy Determination of unbinding force off rate and energy barrier for protein–ligand interaction”, Micron, Vol. 38, 446-461, 2007.
[53] T. Osada, A. Itoh, and A. Ikai, “Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force Microscope”, Ultramicroscopy, Vol. 97, 353–357, 2003.
[54] W. Zhang, A. G. Stack, and Y. S. Chen, “Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM”, Colloids and Surfaces B: Biointerfaces, Vol. 82, 316–324, 2011
[55] http://medicine.tamhsc.edu/basic-sciences/sbtm/afm/modes.php
[56] S. Kidoaki, and T. Matsuda, “Adhesion Forces of the Blood Plasma Proteins on Self-Assembled Monolayer Surfaces of Alkanethiolates with Different Functional Groups Measured by an Atomic Force Microscope”, Langmuir, Vol. 15, 7639-7646, 1999.
[57] W. Hanley, O. McCarty, S. Jadhav, Y. Tseng, D. Wirtz, and K.Konstantopoulos, “Single Molecule Characterization of P-selectin/Ligand Binding”, J. Biol. Chem. 278, 10556, 2003.
[58] F. Kienberger, G. Kada, H. Mueller, and P. Hinterdorfer, “Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability”, J. Mol., Biol.347, 597, 2005.
[59] J. Yu, Q. Wang, X. Shi, X. Ma, H. Yang, Y.G. Chen, and X. Fang, “Single-molecule force spectroscopy study of interaction between transforming growth factor beta1 and its receptor in living cells”, J. Phys. Chem., B. 111, 13619, 2007.
[60] Z. Lv, J. Wang, G. Chen and L. Deng, “Probing Specific interaction forces between human IgG and rat anti-human IgG by self-assembled monolayer and atomic force microscopy”, Nanoscale Res Lett , Vol 5(6):1032–1038, 2010.
[61] K. J, S. KV, S. AH, V. GC, S. CR, and R. M, “Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface”,Biosensors and Bioelectronics, Vol.20, 284–293, 2004.