簡易檢索 / 詳目顯示

研究生: 陳重谷
Chen, Chung-Gu
論文名稱: 利用原子力顯微鏡辨識突變PSGL-1及外鞘膜蛋白之間專一性結合力
AFM applied for specific bonding-force recognition between mutated PSGL-1 and EV71 viral envelope
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 腸病毒71型病毒蛋白1突變PSGL-1解離力專一性鍵結
外文關鍵詞: EV71, VP1, mutated PSGL-1, unbinding force, specific bonding
相關次數: 點閱:972下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年在亞洲地區流行的腸病毒71型(EV71)是一種生長於腸道的RNA病毒,是一種手足口症(hand-foot-mouth disease,HFMD),這類感染病出現神經系統的病徵如抽蓄、肢體麻痺、腦膜炎及呼吸困難等症狀。有些研究已經指出EV71的受體P-selectin glycoprotein ligand-1 (PSGL-1)一旦硫化之後確實和EV71的結合能力會增加,但是在PSGL-1的序列當中,能夠被硫酸化和EV71結合的酪氨酸(Tyrosine, Y)有三個(酪氨酸-46,48,51),目前推測此三個位置可能在硫酸化後和EV71的反應能力會有所不同。為了探討這三個酪氨酸對外鞘膜蛋白VP1的結合能力,本研究將使用苯丙胺酸(Phenylanine, F)取代酪氨酸。本研究使用原子力顯微鏡(Atomic Force Microscopy , AFM)作為量測EV71的外鞘膜蛋白VP1和PSGL-1之間解離力的工具,使用自組裝單分子層製程,VP1和突變的PSGL-1蛋白便可以分別固定於AFM探針以及矽基板之上,在使用原子力顯微鏡在緩衝液中量測兩種蛋白質的解離力。不論是抗體還是VP1的量測結果可知硫酸化的PSGL-1 (46, 48F)的解離力明顯大於硫酸化PSGL-1 (48, 51F)以及硫酸化PSGL-1 (46, 51F)。此結果指出當酪胺酸-51被苯丙胺酸取代而無法硫酸化時會使得硫酸化PSGL-1和VP1的反應性明顯下降,證實酪氨酸-51是最重要的因為只要能組止它被硫酸化,便可以減少PSGL-1和腸病毒71的反應性。原子力顯微鏡能夠利用力學曲線可以分辨突變PSGL-1的反應性,所以適合量測這種與EV71相關的研究。

    Enteroviruses 71 (EV71) are a genus of positive-sense single-stranded RNA viruses which are notable as ones of the major causative agents associated with hand, foot and mouth diseases (hand-foot-mouth disease, HFMD) and also associated with severe central nervous system diseases like twitch, paralysis, meningitis and difficulty breathing, etc. It has been indicated that once the receptor of EV71, P-selectin glycoprotein ligand-1 (PSGL-1) is sulfated, the binding ability with EV71 tends to be increased. There are three tyrosines (tyrosine-46, 48, and 51) in PSGL-1, while three different positions of tyrosines with varied binding abilities to EV71 as PSGL-1 is sulfated. In order to study the different binding abilities of three tyrosines with outer sheath protein Viral Protein 1 (VP1) of EV71, three substitute tyrosines replaced by phenylalanine are studied. Atomic force microscopy (AFM) was utilized as force apparatus to measure the unbinding force between VP1 of and PSGL-1. At first, VP1 and mutated PSGL-1 proteins were immobilized on AFM tip and Si substrate, respectively. The unbinding forces between these two proteins were then measured in a buffer condition. Whether reacted with antibody or VP1, the unbinding forces of sulfated PSGL-1 (46, 48F) were significantly larger than sulfated PSGL-1 (48, 51F) as well as sulfated PSGL-1 (46, 51F). The results indicate that the reactivity between sulfated PSGL-1 and VP1 obviously decreases as tyrosine-51 is replaced by phenylalanine. As a consequence, tyrosine-51 exhibits the major importance because preventing it from being sulfated will reduce the reactivity of PSGL-1 with EV71. In this study, AFM study is competent to tell the difference of reactivity of PSGL-1 mutations through AFM force curves and is therefore promising forEV71 related studies based on the mutated PSGL-1 and VP1.

    摘要 I Extended abstract II 誌謝 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3文獻回顧 3 1.3.1 蛋白質序列上的胺基酸對其功能的影響 3 1.3.2 PSGL-1於N-端的酪胺酸硫酸化與腸病毒71型(EV71)的關係 4 1.3.3酪氨酸被取代後使和PSGL-1和選擇素的結合能力下降 5 1.3.4 AFM於蛋白質之相關解離力研究及量測-解離力定義 7 1.3.5 利用自組裝單分子層和AFM比較專一性和非專一性反應 9 1.4 研究目的 11 第二章 理論基礎 12 2.1 AFM技術發展及原理 12 2.1.1 原子力學顯微術原理 12 2.1.2 原子力學顯微術掃描物體機制 13 2.1.3 原子力學顯微術作用力量量測機制 16 2.2 自組裝單分子層接枝理論及基礎 19 第三章 實驗材料與方法 22 3.1 實驗流程 22 3.2 實驗材料與方法 23 3.2.1 蛋白質試片製備方法 23 3.2.2 蛋白質接枝於修飾過後的探針或矽基板製備方法 25 3.2.3 AFM探針的彈簧常數(Spring constant : kb)之評估 27 3.2.4 AFM之靈敏度正規化 29 3.2.5 AFM之實驗操作及參數設定 30 3.3 實驗設備 30 3.3.1 原子力學顯微鏡(Atomic Force Microscopy,AFM) 30 3.4 分析儀器 32 3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 32 第四章 驗證基板表面改質 34 4.1 以原子力顯微鏡形貌圖觀察蛋白質於矽基板的分佈情形 34 4.2以抗體-抗原專一性反應原理驗證基板及探針的改質 36 4.3以掃描電子顯微鏡驗證基板的改質 41 第五章 突變蛋白質解離力之量測與分析 44 5.1硫酸化後之突變GST-PSGL-1與Antibody-sulfotyrosine之間的專一性分析 44 5.1.1硫酸化之突變GST-PSGL-1與Antibody-sulfotyrosine之間解離力分析 44 5.1.2 Antibody-sulfotyrosine對硫化突變GST-PSGL-1的ELISA分析 50 5.2 硫酸化後之突變GST-PSGL-1與VP1之間的解離力分析 52 結論 59 未來展望 61 參考文獻 62

    [1] Z. Laszik, P. J. Jansen, R. D. Cummings, T. F. Tedder, R. P. McEver, and K. L. Moore, “P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells”, Blood, Vol. 88, 3010–3021, 1996.
    [2] D. Sako, X. Chang, K. M. Barone, G. Vachino, H. M. White, G. Shaw, G. M. Veldman, K. M. Bean, T. J. Ahern, B. Furie, D. A. Cumming, and G. R. Larsen, “Expression cloning of a functional glycoprotein ligand for P-selectin”, Cell, Vol. 75, 1179–1186, 1993.
    [3] W. S. Somers, J. Tang, G. D. Shaw, and R. T. Camphausen, “Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1”, Cell, Vol. 103, 467–479, 2000.
    [4] K. P. Patel, and J. M. Bergelson, “Receptors identified for hand, foot and mouth virus”, Nature Medicine 15, 728 – 729, 2009.
    [5] A. P. Lothrop, M. P. Torres, and S. M. Fuchs, “Deciphering post translational modification codes”, FEBS Letters, Vol. 587, 1247–1257, 2013.
    [6] U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H.J. Güntherodt, “Specific antigen/antibody interactions measured by force microscopy”, Biophysical Journal, Vol. 70, 2437-2441, 1996
    [7] W. Zhang, A. G. Stack, and Y. S. Chen, “Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM”, Colloids and Surfaces B: Biointerfaces, Vol. 82, 316–324, 2011
    [8] Y. M. Wang “Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy”, Doctoral dissertation, Taiwan University, 2006.
    [9] Y. Nishimura, M. Shimojima, Y. Tano, T. Miyamura, and T. Wakita, “Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus71 ”,Nat Med 15, Vol. 794–797, 2009.
    [10] Y. Nishimura, T. Wakita, and H. Shimizu, “Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection”, PLoS Pathog 6, 2010.
    [11] Y. Nishimura, H. Lee, S. Hafenstein, C. Kataoka, T. Wakita, J. M. Bergelson and H. Shimizu, “Enterovirus 71 Binding to PSGL-1 on Leukocytes: VP1-145 Acts as a Molecular Switch to Control Receptor Interaction”, PLoS Pathog 9(7), 2013.
    [12] S. Lin, Y. M. Wang, L. S. Huang, C. W. Lin, S. M. Hsu, and C. K. Lee, “Dynamic response of glucagon/anti-glucagon pairs to pulling velocity and pH studied by atomic force microscopy”, Biosensors and Bioelectronics, Vol. 22(6), 1013-1019, 2007.
    [13] McEver, R. P., and C. Zhu, “Rolling cell adhesion”, Annu. Rev. Cell Dev., Biol. 26:363–396, 2010.
    [14] Zhu, C., T. Yago, and R. P. McEver, “Mechanisms for flowenhanced cell adhesion”, Ann. Biomed. Eng. 36:604–621, 2008.
    [15] Wagner, D. D., and P. S. Frenette“The vessel wall and its interactions”, Blood. 111:5271–5281, 2008.
    [16] Zhu, C., M. Long, and P. Bongrand, “Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues”, Ann. Biomed., Eng. 30:305–314, 2002.
    [17] Ramachandran, V., M. U. Nollert, and R. P. McEver, “Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin”, Proc. Natl. Acad. Sci., USA. 96:13771–13776, 1999.
    [18] Liu, W., V. Ramachandran, and R. P. McEver, “Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin”, J. Biol.,Chem. 273:7078–7087, 1998.
    [19] Pouyani, T., and B. Seed, “PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus”, Cell. , 83:333–343, 1995.
    [20] Bruker Customer Facing, “Dimension FastScan”, 2, 2011.
    [21] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 8, 2000.
    [22] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 9, 2000.
    [23] C. B. Prater, P. G. Maivald, K. J. Kjoller, and M. G. Heaton, “TappingMode Imaging Applications and Technology”, 2004.
    [24] Bruker Customer Facing, “Peak Force - QNM”, 6, 2011.
    [25] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 37, 2000.
    [26] Y. M. Wang “Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy”, Doctoral dissertation, Taiwan University, 2006.
    [27] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 45, 2000.
    [28] S. B. Velegol, and B. E. Logan, “Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves”, Langmuir, Vol. 18, 5256-5262, 2002.
    [29] A. Bendavid, P. J. Martina, A. Jamtinga, and H. Takikawab, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition”, Thin Solid Films, Vol. 355-356, 6-11, 1999.
    [30] H. Mostéfa-Sba, B. Domenichini, and S. Bourgeois, ”Iron deposition on TiO2(110): effect of the surface stoichiometry and roughness”, Surface Science Reports, Vol. 437, 107-115, 1999.
    [31] K. W. Lee, S. Lee, and J. W. Park, ”Electroplated Cu and sputtered Ta crystallographic texture degradation in Cu/Ta/SiOF layered structures”, Journal of The Electrochemical Society, Vol. 148, C131-135, 2001.
    [32] H. J. Grabke “Surface and interface segregation in the oxidation of metals”, Surface and Interface Analysis, Vol. 30, 112, 2000.
    [33] C. Y. Rha, W. S. Kim, J. W. Kim, and H. H. Park, “Relationship between microstructure and electrochemical characteristics in steel corrosion”, Applied Surface Science, Vol. 169, 587-592 , 2001.
    [34] S. S. Datwani, R. A. Vijayendran, E. Johnson, and S. A. Biondi, “Mixed Alkanethiol Self-Assembled Monolayers as Substrate for Microarraying Applications”, Langmuir, Vol. 20, 4970-4976, 2004.
    [35] D. Losic, J. G. Shapter, and J. J. Gooding, “Influence of Surface Topography on Alkanethiol SAMs Assembled from Solution and by Microcontact Printing”, Langmuir, Vol. 17, 3307-3316, 2001.
    [36] J. Lahiri, E. Ostuni, and G. M. Whitesides, “Patterning Ligands on Reactive SAMs by Microcontact printing”, Langmuir, Vol. 15, 2055-2066, 1999.
    [37] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial Chemistries for Nanoscale Transfer Printing”, Journal of the American Chemical Society, Vol. 124(26), 7655, 2002
    [38] Y. Tai, A. Shaporenko, M. Grunze, and M. Zharnikov, “Effect of Irradiation Dose in Making an Insulator from a Self-Assembled Monolayer”, The Journal of Physical Chemistry B, Vol. 109, 19411-19415.
    [39] Y. Tai, A. Shaporenko, W. Eck, M. Grunze, and M. Zharnikov, “Abrupt change in the structure of self-assembled monolayers upon metal evaporation”, Applied Physics Letter, Vol. 85, 6257-6259, 2004.
    [40] A. Ulman, “An Introduction to Ultrathin Organic Film From Langmuir-Blodgett to Self-Assembly”, 1991.
    [41] C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles, and R. C. Salvarezza, “Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)”, Journal of physics: Condensed Matter, Vol. 18, R867-R900, 2006.
    [42] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, ”Comparison of the structures and wetting properties of self-assemble monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold”, Journal of the American Chemical Society, Vol. 113, 7152-7167, 1991.
    [43] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser, and M. Grunze, “Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resist for nanolithography”, Applied Physics Letters, Vol. 75, 2401-2403, 1999.
    [44] M. B. Ali, F. Bessueille, J. M. Chovelon, A. Abdelghani, N. J. Renault, M. A. Maaref, and C. Martelet, “Use of ultra-thin organic silane films for the improvement of gold adhesion to the silicon dioxide wafers for (bio)sensor applications”, Materials Science and Engineering C, Vol. 28, 628-632, 2008.
    [45] P. Pallavicini, A. Taglietti, G. Dacarro, Y. Antonio, D. Fernandez, M. Galli, P. Grisoli, M. Patrini, G. S. De Magistris, and R. Zanoni, “Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity”, Journal of Colloid and Interface Science, Vol. 350, 110-116, 2010.
    [46] M. Tanaka, M. Komagata, M. Tsukada, and H. Kamiya, “Evaluation of the particle–particle interactions in a toner by colloid probe AFM”, Powder Technology, Vol. 183, 273–281, 2008.
    [47] Bruker Customer Facing, “Peak Force - QNM”, 6, 2011.
    [48] I. Sokolov, M. E. Dokukin, and N. V. Guz, “Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments”, Methods 60, 202–213, 2013.
    [49] B. Xiao, C. Tong, X. Jia, R. Guo, S. Lu, Y. Zhang, R. P. McEver, C. Zhu, and M. Long, “Tyrosine Replacement of PSGL-1 Reduces Association Kinetics with P- and L-Selectin on the Cell Membrane”, Biophysical Journal, Vol.103, 777–785, 2012.
    [50] A. Alessandrini, and P. Facci, “AFM: a versatile tool in biophysics”, Measurement Science and Technology, Vol. 16, R65-R92, 2005
    [51] C. T. Lim, E. H. Zhou, A. Li, S. R. K. Vedula, and H. X. Fu, “Experimental techniques for single cell and single molecule biomechanics”, Materials Science and Engineering C, Vol. 26, 1278-1288, 2006.
    [52] C. K. Lee, Y. M. Wang, L. S. Huang, and S. M. Lin, “Atomic force microscopy Determination of unbinding force off rate and energy barrier for protein–ligand interaction”, Micron, Vol. 38, 446-461, 2007.
    [53] T. Osada, A. Itoh, and A. Ikai, “Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force Microscope”, Ultramicroscopy, Vol. 97, 353–357, 2003.
    [54] W. Zhang, A. G. Stack, and Y. S. Chen, “Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM”, Colloids and Surfaces B: Biointerfaces, Vol. 82, 316–324, 2011
    [55] http://medicine.tamhsc.edu/basic-sciences/sbtm/afm/modes.php
    [56] S. Kidoaki, and T. Matsuda, “Adhesion Forces of the Blood Plasma Proteins on Self-Assembled Monolayer Surfaces of Alkanethiolates with Different Functional Groups Measured by an Atomic Force Microscope”, Langmuir, Vol. 15, 7639-7646, 1999.
    [57] W. Hanley, O. McCarty, S. Jadhav, Y. Tseng, D. Wirtz, and K.Konstantopoulos, “Single Molecule Characterization of P-selectin/Ligand Binding”, J. Biol. Chem. 278, 10556, 2003.
    [58] F. Kienberger, G. Kada, H. Mueller, and P. Hinterdorfer, “Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability”, J. Mol., Biol.347, 597, 2005.
    [59] J. Yu, Q. Wang, X. Shi, X. Ma, H. Yang, Y.G. Chen, and X. Fang, “Single-molecule force spectroscopy study of interaction between transforming growth factor beta1 and its receptor in living cells”, J. Phys. Chem., B. 111, 13619, 2007.
    [60] Z. Lv, J. Wang, G. Chen and L. Deng, “Probing Specific interaction forces between human IgG and rat anti-human IgG by self-assembled monolayer and atomic force microscopy”, Nanoscale Res Lett , Vol 5(6):1032–1038, 2010.
    [61] K. J, S. KV, S. AH, V. GC, S. CR, and R. M, “Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface”,Biosensors and Bioelectronics, Vol.20, 284–293, 2004.

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE