| 研究生: |
林詩涵 Lin, Shih-han |
|---|---|
| 論文名稱: |
奈米流體於微渠道散熱器性能的數值分析 Numerical Study of Microchannel Heat Sink Performance using Nanofluids |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 微渠道散熱器 、奈米流體 、數值計算 、熱傳 、單相法 、兩相法 |
| 外文關鍵詞: | Heat transfer, Single phase approach, Two phase approach, Numerical computations, Microchannel heat sink, Nanofluids |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文模擬奈米流體作為微渠道散熱器(MCHS)之冷卻流體,奈米流體分別使用單相法與兩相法模擬,並以數值方法分析其性能。在層流的情況下,與參考文獻的實驗數據作數值預測值的確認,接著再進一步延伸應用至紊流場。紊流流場的模擬,以標準 雙方程式模式配合牆函數來求解。網格設計則採用正交非均勻的交錯式網格。考慮的參數為:粒子體積濃度,體積流率,雷諾數。
數值計算結果顯示,使用兩相法的計算值較單相法準確。奈米流體的熱傳性能隨著粒子體積濃度的增加而增強。在層流情況下,奈米流體的熱阻比水的熱阻小,並隨著體積濃度與體積流率的提高而下降;在紊流情況下,奈米流體的熱阻則隨著粒子體積濃度與體積流率的提高而有輕微的增加。另一方面,討論奈米流體冷卻MCHS與水冷卻MCHS的壓降值,在層流情況下,奈米流體壓降有些微的增加;但在紊流情況下,壓降則是相當顯著地增加。
In this study, microchannel heat sink (MCHS) performance using nanofluids as coolant is analyzed numerically and nanofluids are modeled using the single phase approach and the two phase approach. The numerical predictions are validated with available experimental data in the literature in the laminar flow, then extend to turbulent flow. The turbulent governing equations are solved with the standard turbulence model. An orthogonal non-uniform staggered grid is used for the establishment of mesh grids. The parameters studied include the particle volume fraction, the volumetric flow rate , Reynolds number.
The numerical computations indicate that the results of the two phase approach are more accurate than the single phase approach. The heat transfer performance enhances by increasing the particle volume fraction. In the laminar flow, the thermal resistance of nanofluids is smaller than that of water, and which reduces as the particle volume fraction and the volumetric flow rate increases. In turbulent case, a slight increase in the thermal resistance of nanofluids with increasing of the particle volume fraction and the volumetric flow rate. In addition, the pressure drop of both nanofluid-cooled MCHS and pure water-cooled MCHS is discussed. For laminar case, it seems slight increase in pressure drop for nanofluid-cooled MCHS. But in turbulent flow, the pressure drop increases quite significantly.
Adomeit P. , Renz U. , “Deposition of fine particles from a turbulent liquid flow : experiments and numerical predictions,” International Journal of Heat Mass Transfer, Vol.51, pp.3491-3503, 1996.
Buongiorno J. , “Convective transport in nanofluids,” Journal of Heat Transfer, Vol.128, pp.240-250, 2006.
Behzadmehr A. , Saffar-Avval M. , Galanis N. , “Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach,” International Journal of Heat and Fluid Flow, Vol.28, pp.211-219, 2007.
Chein R. , Chuang J. , “Experimental microchannel heat sink performance studies using nanofluids,” International Journal of Thermal Sciences, Vol.46, pp.57-66, 2007.
Choi , S.U.S. , “Enhancing thermal conductivity of fluids with nanoparticles developments and applications of non-Newtonian flow,” ASME FED Vol.231/MD66, pp.99-105, 1995.
Choi , S.U.S. , Zhang Z.G. , Yu W. , Lockwood F.E. , Grulke E.A. , ”Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett. Vol.79(14), pp.2252-2254, 2001.
Crowe C.T. , Troutt T.R. , Chung J.N. , “Numerical models for two-phase turbulent flow,” Ann. Rev. Fluids Mech., Vol.28, pp.11-43, 1996.
Eastman , Choi J. , Li S. , Lee S. , “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, Vol.457, pp,3-11, 1997.
Eastman , Choi J. , S.U.S. , Li S. , Yu W. , Thompson L.J. , “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, Vol.78(6), pp.718-720, 2002.
Hessamoddin Abhassi , Cyrus Aghanajafi , “Evaluation of heat transfer agumentation in a nanofluid-cooled microchannel heat sink,” Journal of Fusion Energy, Vol.25, No.3/4, 2006.
Ishii M. , Mishima K. , “Two-fluid dynamic theory of two-phase flow,” Paris: Eyrolles, 1975.
Jayatilleke C.L. , “The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer,” Prog. Heat Mass Transfer, Vol.1, pp.193-329, 1969.
Keblinski P. , Phillpot S.R. , Choi , S.U.S , Eastman J.A. ,”Mechanisms of heat flow in suspensions of nano-sized particles(nanofluid),” International Journal of Heat Mass Transfer, Vol.45, pp855-863, 2002.
Launder B.E. , Spalding D.B. , “The numerical computation of turbulent flow,” Computer Method in Applied Mechanics and Engineering, Vol.3, pp.269-289, 1972.
Lee S. , Choi , S.U.S. , Eastman J , “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, Vol.121, pp.280-289, 1999.
Manninen, M., Taivassalo, V., Kallio, S., “On the mixture model for multiphase flow,” VTT Publications 288. Technical Research Center of Finland., 1996.
Miller A. , Gidaspow D. , “Dense,vertical gas- solid flow in a pipe,” AIChE J.,Vol.38, pp.1801-1815, 1992.
Patankar S.V. , Numerical Heat Transfer and Fluid Flow, New York, McGraw-Hill, 1980.
Qu W. , Mala G.M. , Li D. , “Heat transfer for water flow in trapezoidal silicon micrechannels,” International Communications in Heat and Mass Transfer, Vol.43, pp.3925-3936, 2000.
Schiller L. , Naumann A. , “A drag coefficient correlation,” Z.Ver. Deutsch. Ing. 77, pp.318-320, 1935.
Tuckerman D.B. , Pease R.F. , “High-performance heat sinking for VLSI,” IEEE Electronic Devices Letters, EDL 2, pp126-129, 1981.
Wen D. , Ding Y. , “Experimental investigation into convective heat transfer of nanofluids at the entrance regions under laminar flow conditions,” International Journal of Heat and Mass Transfer, Vol.47, pp.51-81, 2004.
Xuan Y.M. , Li Q. , “Heat transfer enhancement of nanofluids,” International Journal of Fluid Flow, Vol.21, pp.58-64, 2000.
Xuan Y.M. , Li, Q. , “Investigation on convective heat transfer and flow features of nanofluids,” Journal of Heat Transfer, Vol.125, pp.151-155, 2003.