簡易檢索 / 詳目顯示

研究生: 吳曉銘
Wu, Hsiao-Ming
論文名稱: 偏極化同調斷層掃描儀量測史托克參數於非等向材料光學參數之研究
Polarization-sensitive optical coherence tomography with Stoke Parameters for Measuring Optical Parameters in Anisotropic Materials
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 153
中文關鍵詞: 偏極化光學同調性斷層掃描術穆勒矩陣史托克參數雙衰減雙折射
外文關鍵詞: Polarization-Sensitive Optical Coherence Tomography (PSOCT), Mueller Matrix, Stoke parameter, birefringence, diattenuation
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描術(Optical Coherence Tomography)是以低同調干涉儀為基礎的光學造影技術,其可有效對樣品提供非侵入式之微米級橫截面影像。在先前的研究中,已經發展了使用光學同調斷層掃描的技術進行厚度與折射係數的量測,接著並發展出新型偏極化光學同調斷層掃描術(Polarization-Sensitive OCT),此系統能延伸量測材料的雙折射特性如:明顯相位延遲、光軸方位參數。而本研究提出若能再結合穆勒矩陣(Mueller Matrix)量測於偏極化光學同調斷層掃描術,定義出材料本身的穆勒矩陣和史托克參數,將可拓展非等向性材料至更全面性之檢測。

      在本研究中,我們結合史托克參數或穆勒矩陣之量測於偏極化光學同調斷層掃描儀發展出一種新技術,使能藉由量測所得的史托克參數或穆勒矩陣,演算得出光學非等向性材料之光學參數;此量測技術搭配可應用於線性雙折射、旋性雙折射、以及旋性雙向衰減此三種重要非等向性特性所結合的材料數學模型,能成功解出主軸角度(α)、相位延遲(β)、以及旋光角(γ)、旋性雙衰減(R)此四個非等向性材料之參數。

      整體而言,此研究拓展了偏極化光學同調斷層掃描術,使其不單能量測線性雙折射材料,也可應用數學模型將可量得之參數延伸至旋性雙折射、旋性雙向衰減材料之結合。因此,此光學同調斷層掃描術對於應用在相關光電產業,生醫組織於深入研究量測光學材料之多項光學參數將提供有力工具。

    Optical coherence tomography (OCT) based on the low coherence interferometry (LCI) is a powerful technique for performing in-depth cross-sectional imaging in scattering media for the resolution of micrometer without invasion. In earlier research, there have been reports of the measurement of refractive index (n) and thickness (t) by use of OCT, and subsequently, the polarization-sensitive OCT (PSOCT) for measurements in apparent phase retardation and optical axis orientation has been established. With the
    combination of Mueller matrix measurements and OCT, one can obtain the more information relative to birefringence and diattenuation of a sample for in-depth cross-sectional scanning within OCT resolution.

    The objective of the current study is to develop a new technique of combination of Stoke parameters or Mueller matrix measurements and PS-OCT system to exactly acquire optical parameters of anisotropic materials by specific calculation. Accordingly, the calculation methods to determine: (1) the principal axis angle (α) and retardance (β) for the linear birefringence; (2) optical rotation angle (γ) for the circular birefringence; (3) circular diattenuation (R) for the circular diattenuation are successfully extracted by the analytical model in this study.

    As a result, the extended PSOCT system has the capabilities in measuring linear birefringence, circular birefringence, and circular diattenuation according to the proposed analytical model. So, it is believed that this measuring system could be applied in the photoelectric industries and bio-tissues for advanced measurements in various optical parameters

    Abstract...................................................3 中文摘要...................................................5 致謝.......................................................7 able of Contents..........................................8 List of figure............................................11 List of table.............................................16 Chapter 1 Introduction....................................17 1.1 Basic Optical Coherence Tomography....................18 1.1.1 OCT Based on Low Coherence Interferometry...........18 1.1.2 Introduction of OCT.................................19 1.2 Developments in OCT...................................20 1.2.1 Advance in Axial Resolution.........................20 1.2.2 Measurement in the Thickness and Refractive Index...21 1.2.3 Polarization-Sensitive OCT..........................22 1.2.4 Measured Mueller matrix characterization of biological tissue by OCT..................................24 1.3 Previous Expansion in Our Team........................25 1.4 Destination and Motivation of the Research............26 Chapter 2 Basic Theory....................................35 2.1 Low Coherence Interferometry..........................35 2.1.1 The Principle of LCI................................35 2.1.2 The Basic Theory of the LCI.........................36 2.1.3 Form of the Signal from the Photodetector...........39 2.2 Optical Coherence Tomography..........................42 2.2.1 Axial Resolution....................................42 2.2.2 Define the Thickness and Refractive Index of the Single Layer..............................................45 2.3 Dispersion............................................47 2.3.1 Dispersion Effect...................................47 2.3.2 Dispersion Compensation.............................48 2.4 Conventional Methods to Measure Anisotropic Materials.49 2.4.1 Birefringence Materials and Diattenuation Materials.49 2.4.1.1 The Optical Properties of Linear Birefringence....49 2.4.1.2 Phase Retardation.................................56 2.4.1.3 Diattenuation Materials...........................59 2.4.1.4 Circular Birefringence Materials..................60 2.4.2 Configuration of PS-OCT.............................64 2.4.3 Stokes Parameter Method and Jones matrix transform to Mueller matrix............................................67 Chapter 3 Methods to Measure Anisotropic Parameters.......70 3.1 Measurement of sample by Using Stokes Parameter Method....................................................70 3.1.1. The New Configuration of Stokes measurement PS-OCT.70 3.1.2 Stokes Parameter Method for Linear Birefringence Materials.................................................83 3.1.3 Stokes Parameter Method for combination of Linear and Circular Birefringence Materials..........................89 3.1.4 Stokes Parameter Method for combination of Circular Birefringence and Circular Diattenuation Materials........96 3.1.5 Stokes Parameter Method for combination of Linear Birefringence, Circular Birefringence and Circular Diattenuation............................................100 3.2 Measurement of sample by Using Mueller matrix........108 3.2.1 Mueller matrix Method..............................108 3.2.2 Determination of Linear Birefringence of Sample....111 3.2.3 Determination of Linear and Circular Birefringence of Sample...................................................112 3.2.4 Determination of Circular Birefringence and Circular Diattenuation of Sample..................................114 3.2.5 Determination of Linear Birefringence, Circular Birefringence and Circular Diattenuation of Sample.......115 Chapter 4 Experiments....................................119 4.1 Measurement System and Devices.......................119 4.2 Resolution Performance of the New System.............125 4.2.1 Axial Resolution...................................125 4.2.2 Dispersion Compensation............................125 4.3 Measurement for Linear Birefringence.................130 Chapter 5 Conclusions and Suggestions....................142 5.1 Conclusions and Discussions..........................142 5.2 Suggestions..........................................143 Bibliography.............................................146 Autobiography............................................153

    Bouma, B. E. Tearney, G. J., Boppart, S. A., Hee, M. R. Brezinski, M. E., and Fujimoto, J. G., "High-resolution optical coherence tomography imaging using a mode-lock Ti:Al2O3 laser source," Opt. Lett., Vol. 20, pp. 1486-1488, (1995)
    Bouma, B. E., Tearney, G. J., Bilinsky, I. P., Golubovic, B., and Fujimoto, J. G., "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett., Vol. 21, pp. 1839-1841 (1996).
    Bouma, B. E. and Tearney, G. J., Handbook of optical coherence tomography, Marcel Dekker, New York (2002).
    Chen, P.C, Lo, Y.L, Yu, T.C, Lin, J.F,and Yang, T.T "Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters" Optics Express, Vol. 17, pp.15860-15884 (2009).
    Dave, D. P., Akkin, T. and Milner, T. E., "Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence," Opt. Lett., Vol. 28, pp. 1775-1777 (2003).
    De Boer, J. F., Milner, T. E., van Gemert, M. J. C., and Nelson, J.S., "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 22, pp. 934-936 (1997).
    De Groot, P., "Chromatic dispersion effects in coherent absolute ranging," Opt. Lett., Vol 17, pp.898-890 (1992).
    Drexler, W., Morgner, U., Krtner, F. X., Pitris, C., Boppart, S. A., Li, X. D., Ippen, E. P., and Fujimoto, J. G., "Invivo ultrahigh-resolution optical coherence tomography," Opt. Lett., Vol 24, pp.1221-1223 (1999).
    Fercher, A.F., Hitzenberger, C.K., Sticker, M. E., Moreno-Barriuso E., Leitgeb, R., Drexler, W., and Sattmann, H., "A thermal light source technique for optical coherence tomography," Opt. Commun., Vol. 185, pp.57-64 (2000).
    Fercher, A. F., Hitzenberger, C. K., Sticker, M., and Zawadzki, R., "Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography," Opt. Express, Vol 9, pp. 610-615 (2001).
    Fercher, A. F., Drexler, W., Hitzenberger, C. K., and Lasser, T., "Optical coherence tomography - principles and applications," Rep. Prog. Phys., Vol 66, pp.239-303 (2003).
    Fukano, T. and Yamaguchi, I., "Simultaneous measurement of thickness and refractive indices of multiple layers by a low coherence confocal microscope," Opt. Lett., Vol. 21, pp. 1942-1944 (1996).
    Goodman, J.W., Statistical optics, New York, NY: John Wiley and Sons (1985).
    Haruna, M., Ohmi, M., Mitsuyama, T., Tajiri, H., Maruyama, H., and Hashimoto, M., "Simultaneous measurement of the phase and group indices and thickness of transparent plates by low-coherence interferometry," Opt. Lett., Vol. 23, pp. 966-968 (1998).
    Hee, M.R., Huang, D., Swanson, E.A., and Fujimoto, J.G., "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B, Vol. 9, pp. 903-908 (1992).
    Hitzenberger, C. K., "Measurement of corneal thickness by low-coherence interferometry," Appl. Opt., Vol .31, pp. 6637- (1992).
    Hitzenberger, C. K., Baumgartner, A., and Drexle,r W., "Dispersion effects in partical coherence interferometry: Implications for intraocular ranging," Journal of Biomedical optics, Vol. 4, pp. 144-151 (1999).
    Hitzenberger, C., Goetzinger, E., Sticker, M., Pircher, M., and Fercher, A., "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express, Vol. 9, pp. 780-790 (2001).
    Hoeling, B.M., Fernandez, A.D., Haskell, R.C., Huang, E., Myers, W.R., Petersen, D.C., Ungersma, S.E., Wan, G., and Williams, M.E., "An optical coherence microscope for 3-dimensional imaging in developmental biology," Optics Express. Vol. 6, pp. 136-146 (2000).
    Izatt, J. A., Hee, M. R., Owen, G. M., Swanson, E. A., and Fujimoto, J. G., "Optical coherence microscopy in scattering media," Opt. Lett. Vol. 19, pp. 590-594 (1994)
    Jiao, S. and Wang, L. V. "Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography" OPTICS LETTERS, Vol. 27, pp.101-103(2002).
    Jiao, S. Yu, W. Stoica, G.and Wang, Lihong. V. "Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging" APPLIED OPTICS , Vol. 42, pp. 5191-5197 (2003) .
    Jiao, S, and Wang, L.V, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography" Journal of Biomedical Optics, Vol. 7,pp. 350–358 ( 2002).
    Kemp, N. J., Park, J., Zaatari, H. N., Rylander, H. G., and Milner, T. E., "High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography ," J. Opt. Soc. Am. A , Vol22, pp. 552-560 (2005).
    Liao, C.C., Lo, Y. L., and Yeh, C.Y., "Measurement of Multiple Optical Parameters of Birefrigent Sample using Polarization-sensitive Optical Coherence Tomography" Journal of Lightwave Technology", Vol. 27, pp. 483-493 (2009).
    Lo, Y. L., Kuo, C. I., Chuang, C.H., and Yan, Z.Z., "Optical coherence tomography system with no high-precision scanning stage and stage controller," Appl. Opt., Vol. 43, pp. 4142-4149, 2004.
    Maruyama, H., Inoue, S., Mitsuyama, T., Ohmi, M., and Haruna, M., "Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness," Appl. Opt., Vol. 41, pp. 1315-1322 (2002).
    Nishi, H., Itadani, T., Ohmi, M., and Haruna, M. "Tomography-based measurement of refractive index and thickness profiles by the low coherence interferometry," 16th Int'1 conf. Optical Fiber Sensors, Vol. 16, pp. 764-767 (2003).
    Oh, J. T. and Kim, S. W., "Polarization-sensitive optical coherence tomography for photoelasticity testing of galss/epoxy composites," Opt. Express, Vol. 11, pp.1669-1676 (2003).
    Ohmi, M., ohnishi, Y., Yoden, K., and Haruna, M., "In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry," IEEE Trans. Biomed. Eng., Vol. 47, pp. 1266-1270 (2000).
    Roth, J. E., Kozak, J. A., Yazdanfar, S., Rollins, A. M., and Izatt, J. A., "Simplified method for polarization-sensitive optical coherence tomography," Opt. Lett., Vol. 26, pp. 1069-1071 (2001).
    Schoenenberger, K., Colston, B. W., Jr, Maitland, D. J., Da Silva, L. B., and Everett, M. J., "Mapping of birefringence and thermal damage in tissue by sue of polarization-sensitive optical coherence tomography," Appl. Opt., Vol. 37, pp. 6026-6036 (1998).
    Sato, M., Wakaki, I., Watanabe, Y., and Tanno, N., "Fundamental characteristics of a synthesized light source for optical coherence tomography," Appl. Opt., Vol. 44, pp. 2471-2481 (2005).
    Schmitt, J.M., “Optical coherence tomography (OCT): A Review,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 1205–1215 (1999).
    Schoenenberger, K., Colston, B. W., Jr, Maitland, D. J., Da Silva, L. B., and Everett, M. J., "Mapping of birefringence and thermal damage in tissue by sue of polarization-sensitive optical coherence tomography," Appl. Opt., Vol. 37, pp. 6026-6036 (1998).
    Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Hee, M. R., and Fujimoto, J. G., "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett., Vol. 20, pp. 2258-2261 (1995).
    Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Hee, M. R., and Fujimoto, J. G., "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. Vol. 20, pp. 2258-2260 (1995).
    Tearney, G. J., Bouma, B. E., and Fujimoto, J. G., "High-speed phase- andgroup-delay scanning with a grating-based phase controldelay line," Opt. Lett., Vol. 22, pp. 1811-1813 (1997).
    Wiesauer, K., Pircher, M., Goetzinger, E., Hitzenberger, C. K., Engelke, R., Ahrens, G., Gruetzner, G., and Stifter, D., "Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials," Opt. Express, Vol. 14, pp. 5945-5953 (2006)
    Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley & Sons, Inc., Ch4 (1984)
    Yao, G. and Wang, L. V. "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography" OPTICS LETTERS , Vol. 24, pp. 180-190 (1999)
    Yeh, P. and Gu, C., Optics of Liquid Crystal Displays, Ch4., Wiley Interscience, New York (1999)
    Youngquist, R. C., Carr, S., and Davies, D. E. N., "Optical coherence-domain reflectometry: a new optical evaluation technique," Opt. Lett., Vol. 12, pp. 158- (1987)
    Zhao, Y., Chen, Z., Saxer, C., Xiang, S., de Boer, J. F., and Nelson, J. S., "phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett., Vol. 25, pp.114-116 (2000)
    Zhang, Y., Sato, M., and Tanno, N., "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett., Vol. 26, pp. 205-207 (2001)

    無法下載圖示 校內:2016-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE