簡易檢索 / 詳目顯示

研究生: 吳忠燁
Wu, Chung-yeh
論文名稱: 無電鍍法製備鈀/氮化鋁鎵蕭特基二極體氫氣感測器之研究
Preparation of Pd/AlGaN Schottky Diode Hydrogen Sensors by Electroless Plating Technique
指導教授: 陳慧英
Chen, Huey-ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 127
中文關鍵詞: 氮化鋁鎵無電鍍二氧化矽蕭特基二極體
外文關鍵詞: SiO2, Schottky diode, AlGaN, palladium, electroless-plating
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,吾人嘗試以無電鍍技術研製鈀/氮化鋁鎵(EP Pd/ AlGaN),以及鈀/二氧化矽/氮化鋁鎵 (EP Pd/SiO2/AlGaN)蕭特基二極體氫氣感測器並且探討其氫氣感測特性。文中針對元件之電流-電壓特性加以探討,並且分析濃度在(5ppm-1%)及溫度範圍為(303-523K)下電流-電壓之氫氣感測表現。文中以理論模式及實驗結果探討元件界面品質,並計算氫氣吸附熱力學以及動力學參數。此外,熱蒸鍍式元件(TE Pd/AlGaN)亦被研製與無電鍍式元件( EP Pd/ AlGaN )作感測性能比較。

    由無電鍍鈀/氮化鋁鎵元件結果得知,以無電鍍法製備之蕭特基界面並無熱破壞情形,並且可有效消弭費米能階釘住效應。依據熱離子放射模式,無電鍍元件具較低之反向漏電流且較高之蕭特基能障(905meV)。並且,於303K,無電鍍式元件可達四個數量級變化 (1%H2/air),甚至展現低偵檢極限5ppm H2/air,其靈敏度即達3.3 (0.2V);暫態響應方面,最快響應速率出現在423K,當氫氣濃度50ppm提高至1% H2/air,其響應時間由50秒減少至2.5秒,且回復時間由12.1秒減少至3.5秒。

    以無電鍍鈀/二氧化矽/氮化鋁鎵元件探討以氧化層作為中間層對於感測表現之影響,由於氧化層扮演緩衝層之角色,因而蕭特基界面品質更佳,其反向漏電流特性較無電鍍鈀/氮化鋁鎵元件為小,且蕭特基能障值更高可達1064meV;於溫度303K且氫氣濃度為1%之條件下,其靈敏度更可高達五個數量級變化。然而,於暫態響應結果顯示,其響應時間相較於無電鍍鈀/氮化鋁鎵元件來得大。

    實驗結果顯示,氫氣吸附可以Langmuir isotherm模式描述,並以一階之動力模式描述氫氣初始響應表現。氫氣吸附熱( H○)於無電鍍鈀/氮化鋁鎵元件和無電鍍鈀/二氧化矽/氮化鋁鎵元件分別為-56.4 kJ mole-1 (423-523K) 和-45.9 kJ mole-1(373- 473K),且其相對應之活化能(Ea)分別為27.5 kJ mole-1和15.5 kJ mole-1。

    綜合以上結果,以無電鍍技術鍍覆鈀膜之氮化鋁鎵蕭特基二極體氫氣感測器,具低偵檢極限(<5ppm),寬偵檢範圍(5ppm~1%H2/air),寬溫度範圍(303-523K),高靈敏度,以及快速響應速率以及回復速率,其優異之感測性能應可滿足於市場趨勢與未來發展需求。

    In this study, the Pd/AlGaN and Pd/SiO2/AlGaN Schottky diode hydrogen sensors were fabricated by electroless-plating technique. The dependence of steady current–voltage (I-V) characteristics of the devices were measured under various hydrogen concentrations (5ppm-1%H2/air) and temperatures (303-523K). Besides, the Schottky interface quality, thermodynamic and kinetic parameters were investigated and estimated from the theoretical models and experimental results. For EP Pd/AlGaN device, the same structure fabricated by thermal evaporation method (TE Pd/AlGaN) was employed for further comparison of the sensing performance.

    From the experimental results, it revealed that the interfacial quality of EP Pd/AlGaN device was more perfect with no thermal damage, resulting in effectively preventing the Fermi-level pinning effect. Based on the thermionic emission model, the EP Pd/AlGaN device processed lower reverse leakage current and higher Schottky barrier height (905meV). In addition, at 303K, the sensitivity of EP Pd/AlGaN device reached up to four-order magnitude. Even at extremely low hydrogen concentration, e.g., 5ppm H2/air, the sensitivity approached to 3.3 at a bias of 0.2 V. For transient state analysis, a maximum rate was occurred at temperatures of 423K. The time required for response time is decreased from 50 to 2.5 sec and the recovery time is decreased from 12.1 to 3.5 sec with the increase of hydrogen concentration from 50ppm to 1%H2/air.

    To investigate the influence of SiO2 on sensing performance, it revealed that the oxide intermediate layer can be served as the passivation layer for achieving better interfacial quality. EP Pd/SiO2/AlGaN device also exhibited the lower reverse leakage current and the higher Schottky barrier height (1064meV) as compared with EP Pd/AlGaN device. Besides, it even reached up to five-order magnitude for 1% H2/air at 303K. However, for transient state analysis, it indicated the response time of EP Pd/SiO2/AlGaN device was larger than that of EP Pd/AlGaN one at the operating temperature in this study.

    For the hydrogen adsorption analysis, the equilibrium state of hydrogen adsorption could be described based on the Langmuir isotherm model, and the initial rate of transient detection could be expressed by using a first-order kinetic model. It revealed the enthalpy, H○, were calculated as -56.4 kJ mole-1 (423-523K) and -45.9 kJ mole-1 (373-473K) for EP Pd/AlGaN device, and EP Pd/SiO2/AlGaN device, respectively, also, the corresponding activation energy, Ea, were determined as 27.5 kJ mole-1 and 15.5 kJ, respectively.

    Experimental results indicated that the Pd-AlGaN Schottky diode hydrogen sensors fabricated by electroless-plating exhibited excellent hydrogen sensing performances with wide detection range (5ppm~1%H2/air), wide temperature range (303-523K), high sensitivity, and fast response and recovery rate. Therefore, the electroless plating technique demonstrated promising developments on the fabrication of Pd/AlGaN device for versatile applications.

    誌謝 摘要 Abstract LIST OF CONTENTS……………………………….…………………..………. I LIST OF TABLES……………………………….………………….....………… V LIST OF FIGURES……………………………….…………………...………… VI LIST OF SYMBOLS……………………………….…………………..……...... X Chapter 1 Introduction……………………………………………….……....... 1 1.1 Chemical sensors………………………...…………………………… 1 1.1.1 The definition of chemical sensors……………...……………… 1 1.1.2 Trends for chemical gas sensor…………………..…………….. 2 1.2 Semiconductor type hydrogen sensor……………………….………... 3 1.2.1 Capacitor-type hydrogen sensors…………………..….…..…… 3 1.2.2 Schottky diode-type hydrogen sensors……………….........…… 4 1.2.3 Resistor-type hydrogen sensors………….………..………...….. 5 1.2.4 Optical-type hydrogen sensors……………..……...………….... 7 1.3 Schottky diode-type hydrogen sensor……………………………....... 7 1.3.1 Properties of AlGaN semiconductors…………..………………. 7 1.3.2 High selectivity of catalytic metals to hydrogen……….............. 8 1.3.3 Promotion of thin film plating technique…………..…............... 9 1.3.4 Passivation effect of insulator or oxide layer………..……...….. 10 1.4 Objective and motivation……………... ……………... …………….. 11 Chapter 2 Theoretical Aspects…………………......…………... ……………. 20 2.1 Electroless-plating……………... ……………... ……………………. 20 2.1.1 Electroless-plating…………………………………... ………… 20 2.1.2 The chemical reaction of Pd electroless-plating………............... 21 2.2 Metal-semiconductor contacts…………………………...................... 23 2.3 The rectifying behavior of Schottky diode device………………......... 24 2.4 The theory of hydrogen sensing…..……………... ………..………… 26 2.4.1 Hydrogen sensing mechanism……………... ………….............. 26 2.4.2 Equilibrium state of hydrogen adsorption……………………… 27 2.4.2.1 Langmuir isotherm analysis……………... …..………... 27 2.4.2.2 Temkin isotherm analysis……………..... ….………...... 30 2.4.3 The kinetic behavior of hydrogen adsorption……………........... 32 Chapter 3 Experimental Details……………... ……………... ………………. 40 3.1 Chemicals, materials and gases……………. ……………................... 40 3.1.1 Electroless-plating process…………….…………...................... 40 3.1.2 Photolithography process……………...…………….................. 40 3.1.3 Semiconductor materials and metals……………... …………… 41 3.1.4 Gases……………... ……………... ……………... ……………. 41 3.2 Analytical instruments…………….. ……………... ………………… 42 3.3 Apparatus……………... ……………... ……………….…….............. 42 3.3.1 Apparatus for element fabrication……………............................ 42 3.3.2 Apparatus for current-voltage measurement……….................... 43 3.4 Design of Schottky diode device……………... ……………….…...... 43 3.4.1 Preparation of Pd film……………... ……………...................... 43 3.4.2 Fabrication of Schottky diode devices……………..................... 44 3.5 Hydrogen sensing measurements……………...……………............... 46 3.5.1 Hydrogen sensing system and operation parameters………....... 46 3.5.2 Hydrogen sensing experiments……………... ………………..... 47 Chapter 4 EP Pd/AlGaN Schottky Diode Hydrogen Sensor……………......... 53 4.1 AES analysis……………... ……………... ……………... ….............. 53 4.2 SEM analysis……………... ……………... ……………... …………. 53 4.3 Steady state detection analysis……………... …………….................. 54 4.3.1 I-V characteristics……………... ……………............................. 54 4.3.2 Schottky barrier height lowering…………….............................. 55 4.3.3 Relative sensitivity……………... ……………........................... 56 4.3.4 Langmuir adsorption theory……………... …………................. 57 4.3.5 Hydrogen adsorption analysis……………... ………………….. 57 4.4 Transient detection analysis……………... ……………...................... 59 4.4.1 I-t responses……………... ……………... …………………….. 59 4.4.2 Response time and recovery time……………............................. 59 4.4.3 Oxygen effect on the adsorption kinetics………………………. 60 Chapter 5 EP Pd/SiO2/AlGaN Schottky Diode Hydrogen Sensor…………… 85 5-1 AES analysis……………... ……………... ……………... ………….. 85 5-2 SEM analysis……………... ……………... ……………... …………. 85 5.3 Steady state detection analysis…………….......................................... 86 5.3.1 I-V characteristics……………... ……………............................. 86 5.3.2 Schottky barrier height lowering……………………………….. 87 5.3.3 Relative sensitivity……………... ……………... …………....... 87 5.3.4 Hydrogen adsorption analysis……………... ………………….. 88 5.4 Transient detection analysis……………... ……………....................... 89 5.4.1 I-t responses……………... ……………... …………………….. 89 5.4.2 Response time and recovery time……………............................. 89 5.4.3 Kinetics adsorption analysis…………......................................... 90 Chapter 6 Conclusion and Suggestions……………... …………….................. 112 6.1 EP Pd/AlGaN Schottky diode hydrogen sensor……………................ 112 6.2 EP Pd/SiO2/AlGaN Schottky diode hydrogen senor…………………. 113 6.3 Suggestions……………... ……………... ……………........................ 113 References……………... ……………... ……………... ……………... ……… 114

    [1]M. A. Butler, and Richard J. Buss, “Kinetics of the micormirror chemical Sensor”, Sens, Actu. B, vol.11, pp.161-166 (1993).
    [2]O. S. Wolfbeis, “Chemical sensors-survey and trends”, Fresenius. J. Anal. Chem, vol. 337, pp.522-527 (1990).
    [3]T. Seiyama, “Chemical Sensor Technology”, Kodansha Ltd., Tokyo, Japan (1988).
    [4]I. Lundstrom, S. Shivaraman, C. Svensson and L. Lundkvist, “Hydrogen sensitive MOS field-effect transistor”, Appl. Phys. Lett., vol.26, pp.55-57(1975).
    [5]C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. P. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature”, J. Electron. Mater., vol.28, pp.202-205 (1999).
    [6]A. Arbab, A. Spetz, and I. Lundstrom, “Gas sensors for high-temperature operation-based on metal-oxide-silicon-carbon (MOSiC) devices”, Sens. Actu. B, vol.15-16, pp.19-23 (1993).
    [7]M. Yousul, B. Kuliyev, and B. Lalevic, “Pd-InP chottky diode hydrogen sensors”, Solid State Electron., vol.25, pp.753-758 (1982).
    [8]N. Tasaltin, F. Dumludag, M. A. Ebeoglu, H. Yuzer, and Z. Z. Ozturk, “Pd/ native nitride/n-GaAs structures as hydrogen sensors”, Sens. Actu. B., vol.130, no.1, pp. 59-64 (2008).
    [9]H. I. Chen, C.K. Hsiung, and Y. I. Chou,“Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique”, Semicond. Sci. Technol., vol. 18, pp.620-626 (2003).
    [10]C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, W. C. Liu, “ Study of a new field-effect resistive hydrogen sensor based on Pd/Oxide/
    AlGaAs transistor”, IEEE Trans. Electro. Dev., vol.54, no.5, pp. 1224-1231 (2007).
    [11]C. W. Hung, K. W. Lin, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, W. C. Liu, “ Three-terminal-controlled field-effect resistive
    hydrogen sensor ”, Sens. Actu. B:Chemical, vol.124, no.2, pp.549-556 (2007).
    [12]Y. Y. Tsai, K. W. Lin, H. I. Chen, and C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes”, J. Vac. Sci .Technol. B, vol.21, no.6, pp.2471-2477 (2003).
    [13]L. Voss, B. P. Gila, S. J. Pearton, H. T. Wang and F. Ren, “Characterization of bulk GaN rectifiers for hydrogen gas sensing”, J. Vac. Sci. Technol. B, vol.23, no.6, pp.2373-2377 (2005).
    [14]O. Weidemann, M. Hermann, and G. Steinhoff, H. Wingbrant, A. L. Spetz, M. Stutzmann and M. Eickhoff, “Influence of surface oxides on hydrogen- sensitive
    Pd:GaN Schottky diodes”, Appl. Phys. Lett., vol.83,no.4 , pp.773-775 (2003).
    [15]J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals”,
    Solid State Electronics, vol.49, pp.1330-1334 (2005).
    [16]B. S. Kang, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “AlGaN/ GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor”, Appl.
    Phys. Lett. , vol.84, no.7, pp.1123-1126 (2004).
    [17]H. T. Wang, B. S. Kang, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., vol.87, pp.172105 (2005).
    [18]K. Matsuo, T. Kimura, H. Hasegawa, and T. Hashizume, “Hydrogen response of Pd Schottky diodes formed on AlGaN/GaN heterostructure”, e-J. Surf. Sci. Nanotech., vol.3, pp.314-318 (2005).
    [19]B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN”, Sens. Actu. B, vol.56, pp.164-168, (1999).
    [20]J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals”,
    Solid-State Electronics, vol.49, pp.1330-1330 (2005).
    [21]A. Salehi, A. Nikfarjam, and D. J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application”, Sens. Actu. B, vol.113, pp.419-427 (2006).
    [22]F. K. Yam, and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application”, Appl. Surf. Sci., vol.253, no.24, pp.9525-9528 (2007).
    [23]H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Detection of hydrogen at room temperature with catalyst-coated multiple ZnO nanorods”, Appl. Phys. A, vol.81, pp.1117-1119, (2005).
    [24]J. Jun, B. Chou, J. Lin, A. Phipps, X. Scengwen, K. Ngo, D. Johnson, A. Kasyap, T. Nishida, H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, and S. J. Pearton, “A hydrogen leakage detection system using self-powered wireless hydrogen sensors nodes”, Solid-State Electronics, vol.51, pp.1018-1022 (2007).
    [25]C. H. Han, S. D. Han, I. Singh, and T. Toupance, “Micro-bead of nano- crystalline Fe-doped SnO2 as a sensitive hydrogen gas sensor”, Sens. Actu. B, vol.109, pp.264- 269 (2005).
    [26]Y. K. Jun, H. S. Kim, J. H. Lee, and S. H. Hong, “High H2 sensing behavior of TiO2 films formed by thermal oxidation”, Sens. Actu. B, vol.107, pp.264-270, (2005).
    [27]Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd”, Sens. Actu. B, vol. 83, pp.195-201 (2002).
    [28]T. Iwangage, T. Hyodo, Y. Shimizu, and M. Egashira, “H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode”, Sens.
    Actu. B, vol.93, pp.519-525 (2003)
    [29]H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors-Effects of preparation and pretreatment conditions”, Sens. Actu. B, vol.108, pp.467-472 (2005).
    [30]M. Fleischer, W. Hanrieder, and H. Meixner, “Stability of semiconducting gallium oxide thin films”, Thin Solid Films, vol.190, pp.93-102 (1999).
    [31]R. Pohle, M. Fleischer, and H. Meixner, “ In situ infrared emission spectroscopic study of the adsorption of H2O and hydrogen-containing gases on Ga2O3 gas sensors”, Sens. Actu. B., vol.68, pp. 151-156 (2000)
    [32]D. J. Smith, J. F. Vatelino, R. S. Falconer, and E. L. Wittman, “Stability, sensitivity and selectivity of tungsten trioxide films for sensing applications”, Sens. Actu. B: Chem., vol.13(1-3), pp.264-268 (1993).
    [33]S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide”, Sens. Actu. B, vol.66, pp.142-145 (2000).
    [34]D. Ding, Z. Chen, and C. Lu, “Hydrogen sensing of nanoporous palladium film supported by anodic aluminum oxide”, Sens. Actu. B, vol.120, pp.182-186 (2006).
    [35]R. R. J. Maier, B. J. S. Jones, J. S. Bartion, S. McCulloch, T. Allsop, J. D. C. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing”, J. Opt. A:Pure Appl. Opc., vol.9, pp.S45-S59 (2007).
    [36]B. Baranowski, S .Majchrzak, and T. B. Flanagan, “The volume increase of fcc metals and alloys due to interstitial hydrogen over a wide range of hydrogen
    contents”, J. Phys. F: Met. Phys., vol.1, pp.258-261 (1971).
    [37]P. Wright, “The effect of occluded hydrogen on the electrical resistance of palladium”, Proc. Phys. Soc. A, vol.63, pp.727- 739 (1950).
    [38]M. A. Khan, M. S. Shur, and Q. Chen, “Hall measurements and contact resistance in doped GaN/AlGaN heterostructures”, Appl. Phys. Lett., vol.68, pp.3022-
    3024, (1996).
    [39]Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid State Electron., vol. 41, pp.1569 (1997).
    [40]X. Z. Dang, R. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutrous, and J. M. Redwing, “Fabrication and characterization of enhanced barrier AlGaN/GaN HFET Fabrication and characterization of enhanced barrier AlGaN/GaN HFET”, Electron. Lett., vol.35, pp.602 (1999).
    [41]D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, “Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction”, J. Appl.
    Phys., vol.87, no.2 , pp.801-803 (2000).
    [42]A. Salehi, and V. Nazerian, “ Characterization of magnetic Ni/n-Si Schottky contact for hydrogen gas sensing applications”, Sens. Actu. B, vol.122, pp. 572
    -577 (2007).
    [43]H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. W. McFarland, “Selective H atom sensors using ultrathin Ag/Si Schottky diodes”,
    Appl. Phys. Lett., vol.74, no.26, pp.4046-4048 (1999).
    [44]M. Slaman, B. Dam, M. Pasture, D. M. Schreuders, J. H. Rector, and R. Griessen, “Fiber optic hydrogen detectors containing Mg-based metal hydrides”, Sens. Actu. B:Chemical, vol.123, no.1 , pp.538-545 (2007).
    [45]J. Tiffany, R. E. Cavicchi, S. Semancik, “ Microarray study of temperature dependent sensitivity and selectivity of metal/oxide sensing interfaces”, Adv. Envir. Chem. Sens. Tech, vol.4205, pp.240-247 (2001).
    [46]L. Zhang, H. Al, A. Ibrahim, M. H. Rahman, E. F. McCullen, L. Rimai, R. J. Baird, R. Naik, G. Nweaz,, G. W. Auner, and K.Y. Simon.Ng, “Performance of a MIS type Pd-Cr/AlN/Si hydrogen sensor”, Mater. Res. Soc. Sym. Pro., vol.828, pp.223-227 (2005).
    [47]S. J. Ippolito, S. Kandasamy, K. Kalantar zadeh, and W. Wlodarski, “Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts”, Sens. Actu. B, vol.108, pp. 154-158 (2005).
    [48]F. Rahimi, and A. Iraji zad, “Effective factors on Pd growth on porous silicon by electroless-plating: Response to hydrogen”, Sens. Actu. B, vol.115, pp. 164-169, (2006).
    [49]C. Weichsel, O. Pagni, and A. W. R. Leitch,“Electrical and hydrogen sensing characteristics of Pd/ZnO Schottky diode grown on GaAs”, Semicond. Sci. Technol., vol.20, pp.840-843 (2005).
    [50]O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. Loyd Spetz, M. Stutzmann, and M. Eickhoff, “Influence of surface oxides on hydrogen– sensitive Pd:GaN Schottky diodes”, Appl. Phys. Lett., vol.83, no.4, pp. 773- 775 (2003).
    [51]M. Ali, V. Cimalla, V. Lebedev, V. Tilak, IEEE, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, “A study of hydrogen sensing performance of Pt-GaN Schottky diodes”, IEEE Sens. J., vol.6, no.5, p.1115-1119 (2006).
    [52]J. Zhang, W. Luan, H. Huang, Y. Qi, and S. T. Tu, “Preparation and characteristics of Pt/ACC catalyst for thermoelectric thin film hydrogen sensor”, Sens. Actu, B, vol.128, pp.266-272 (2007).
    [53]J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “Pt-AlGaN/GaN Schottky diodes operated at 8000C for hydrogen sensing”, Appl. Phys. Lett, vol.87, pp.133501, (2005)
    [54]R. Hughes, “Composite palladium membrane for catalytic membrane reactors”, Membr. Technol., vol.2001, pp. 9-13 (2001).
    [55]L. L. Jewell, and B. H. Davis, “Review of absorption and adsorption in the hydrogen- palladium system”, Appl. Cat. A: General, vol.310, pp.1-15 (2006).
    [56]T. S. Huang, and J. G. Pang, “Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs”, Mater. Sci. Eng. B, vol.49, pp.144-151 (1997).
    [57]A. Imre, E. Gontier-Moya, D. L. Beke, and B. Ealet, “Auger electron spectroscopy of the kinetics of evaporation of palladium beaded films from sapphire
    substrate”, Appl. Phys. A, vol.67, pp.469-473 (1998).
    [58]H. D. Tong, A. H. J. Vanden Berg, J. G. E. Gardeniers, and H. V. Jansen,
    “Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane”, Thin Solid Fims, vol.479, pp. 89-
    (2005).
    [59]F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, “Interfacial processes in the Pd/a-Ge:H system”, Appl.Surf. Sci, vol.70-71, no.2, pp.722-726 (1993).
    [60]S. Uemiya, T. Endo, R. Yoshiie, W. Katoh, and T. Kojima, “Fabrication of thin palladium-silver alloy film by using electroplating technique”, Mater. Trans.,
    vol.48, no.5, pp.1119-1123 (2007).
    [61]D. Baudrand and J. Bengston, MacDermid Inc., Waterbury, amd Conn, “Electroless plating process-developing technologies for elctroless nickel, and gold”,
    Metal Finishing, pp.55-57 (1995).
    [62]Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles”,
    IEEE. Electro. Dev. Lett., vol.26, no.2, pp.62-65 (2005).
    [63]J. Suehiro, S. I. Hidaka, S. Yamane, and K. Imasaka, “Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor”, Sens. Actu. B, vol.127, pp.505-511 (2007).
    [64]L. Huang, C. S. Chen, Z. D. He, D. K. Peng, and G. Y. Meng, “Palladium membranes supported on porous ceramics prepared by chemical vapor deposition”, Thin Solid Films, vol.302, pp.98-101 (1997).
    [65]T. C. Pluym, S. W. Lyons, Q. H. Powell, A. S. Gurav, and T. T. Kodas, “Palladium metal and palladium oxide particle production by spray pyrolysis”, Mater.
    Research Bulletin, vol. 28, no.4, pp. 369-376 (1993).
    [66]H. Hasegawa, H. Ohno, “Unified disorder-induced gap state model for insulator/ semiconductor and metal/ semiconductor interfaces”, J. Vac. Sci. Technol. B, vol.4, pp.1130-1138 (1986).
    [67]H. Hasegawa, “Fermi level pinning and Schottky barrier height control at mtal- semiconductor interfaces of InP and related materials”, J. J. Appl. Phys., vol. 38, pp.1098-1102 (1999).
    [68]H. I. Chen, and Y. I. Chou, “A comparative study of hydrogen sensing performances between electrolesss plated and thermal evaporated Pd/InP Schottky diodes”, Semicond. Sci. Technol., vol.18, pp.104-110 (2003).
    [69]H. I. Chen, Yen. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating”, Sens. Actu. B, vol.85, pp.10-18 (2002).
    [70]H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique”, Semicond. Sci.
    Technol., vol.18, pp.620-626 (2003).
    [71]C. K. Wang, R. W. Chuang, S. J. Chang, Y. K. Su, S. C. Wei, T. K. Lin, T. K. Ko, Y. Z. Chiou, and J. J. Tang, “ High temperature and high frequency characteristics of AlGaN/GaN MOS-HFETs with photochemical vapor deposition
    SiO2 layer”, Mater. Sci. Eng. B, vol.119, pp.25-28 (2005).
    [72]S. A. Chevtchenko, M. A. Reshchikov, Q. Fan, X. Ni, Y. T. Moon, A. A. Baski, and H. Morkoç, “Study of SiNx and SiO2 passivation of GaN surfaces”, J. Appl. Phys,
    vol. 101, pp.113709 (2007).
    [73]H. Kambayashi, T. Wada, N. Ikeda, S. Yoshida, “Effects of the high- refractive index SiNx passivation on AlGaN/GaN HFETs with a very low gate-leakage current”,
    Materials Research Society Symposium Proceedings, vol. 892, pp. 69-74 (2006).
    [74]K. Balachander, S. Arulkumaran, T. Egawa, Y. Sano, and K. Baskar, “A comparison on the electrical characteristics of SiO2, SiON and SiN as the gate
    insulators for the fabrication of AlGaN/GaN metal-oxide insulator-semiconductor high-electron mobility-transistors”, J. J. Appl.Phys., vol.44 (7A), pp.4911-4913
    (2005).
    [75]B. Luo, J. W. Johnson, B. P. Gila, A. Onstine, C. R. Abernathy, F. Ren, S. J. Pearton, A. G. Baca, A. M. Dabiran, A. M. Wowchack, and P. P. Chow, “Surface
    passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3”, Solid-State Electro., vol.46, no.4, pp.467-476 (2002).
    [76]B. P. Gila, M. Hlad, A. H. Onstin, R. Frazier, G. T. Thaler, A.Herrero, E. Lambers, C. R. Abernathy, and S. J. Pearton, “Improved oxide passivation of AlGaN/ GaN high electron mobility transistors”, Appl. Phys. Lett., vol.87, pp.163503 (2005).
    [77]T. Hashizume, S. Anantathanasarn, N. Negoro, E. Sano, H. Hasegawa, K. Kumakura, and T. Makimoto, “ Al2O3 insulated-gate structure for AlGaN/GaN heterostructure field effect transistors having thin AlGaN barrier layers”, J. J. Appl. Phys., vol.43, no.6B, pp. L777-L779 (2004).
    [78]M. S. Shivaraman, I. Lundstrom, C. Svensson, and H. Hammarsten, “Hydrogen sensitivity of palladium-thin-oxide-silicon Schottky barriers”, Electron.Lett, vol. 12, pp.484-485 (1976).
    [79]P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of MIS Schottky -barrier diode detector”, IEEE Trans.Electron Devices ED, vol. 28, pp. 1003-1009 (1981).
    [80]I. Lundstrom, “Hydrogen sensitive MOS structure:Part 1. Principles and applications”, Sens. Actuators B, pp. 403-426 (1981).
    [81]M. S. Tyagi, “Physics of Schottky Barrier Junctions” in Metal-Semiconductor Schottky Barrier Junctions and Their Applications, edited by B. L. Sharma, Plenum Press, New York (1984).
    [82]D. Baudrand and J. Bengston, “Electroless plating processes-developing technologies for electroless nickel, palladium, and gold”, Metal Finishing, pp. 55-57 (1995).
    [83]T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, T. P. Chen, L. Y. Chen, K. Y. Chu, C. F. Chang, and W. C. Liu, “Hydrogen sensing characteristics of a
    Pd/AlGaN/GaN Schottky Diode”, Appl. Phys. Express, vol.1, pp.041102 (2008).
    [84]K. Matsuo, T. Kimura, H. Haseqawa, T. Hashizume, “Hydrogen response of Pd Schottky diodes formed on AlGaN/GaN heterostructure”, e-Journal Surf. Sci.
    Nanotechno., vol.3, pp.314-318 (2005).
    [85]M. Miyoshi, Y. Kuraoka, K. Asai, T. Shibataq, and M. Tanake, “Electrical characterization of Pt/AlGaN/GaN Schottky diodes grown using AlN template and their application to hydrogen gas sensors”, J. Vac. Sci. Tech. B., vol.25, no.4, pp.1231-1235 (2007).
    [86]J. Song, W. Lu, J. S. Flynn, G. R. Brandes, “AlGaN/ GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals”,
    Solid-State Electro., vol.49, pp.1330-1334 (2005).
    [87]X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen sensors based on AlGaN/AlN/ HEMT”, Microelectro. J., vol.39, pp.20-23 (2008).
    [88]H. T. Wang, B. S. Kang, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN/GaN high electron mobility transistor”, Appl. Phys. Lett., vol.87, 172105 (2005).
    [89]A. T. Winzer, R. Goldhahn, G. Gobsch, A. Dadgar, A. Krost, O. Weidemann, M. Stutzmann, and M. Eickhoff, “Electroreflectance spectroscopy of Pt/AlGaN/Gan
    heterostructures exposed to gaseous hydrogen”, Appl. Phys. Lett., vol.88, pp.024101 (2006).
    [90]J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures”, Sens. Actu. B, vol.87, pp.425-430 (2002).
    [91]J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, M. Stutzmann, “ Group III-nitride-based gas sensors for combustion monitoring”, Materials Sci. Eng., vol. B93,
    PP.207-214 (2002).
    [92]H. T. Wang, T. J. Anderson, B. S. Kang, F. Ren, C. Li, Z. N. Low, J. Lin, B. P. Gila, S. J. Pearton, A. Osinsky, and A. Dabiran, “Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based ohmic contacts”, Appl. Phys. Lett., vol.90, pp.252109 (2007).
    [93]B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. C. Fitch, J. K. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, K. H. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton, “Hydrogen sensors based on Sc2O3/AlGaN/GaN high electron mobility transistors”, Phys. Stat. Sol., vol.2, no.7, pp.2672-2675, (2005).
    [94]Z. Shi, S. Wu, J. A. Szpunar, M. Roshd, “An observation of palladium formation on a porous stainless steel substrate by electroless deposition”, J. Membr. Sci.,vol.280, pp.705-711 (2006).
    [95]K. L. Yeung, S. C. Christiansen, and A. Varma, “Palladium composite membranes by electroless plating technique Relationship between plating kinetics, film
    micro structure and membrane performance”, J. Membr. Sci., vol.159, pp.107-122 (1999).
    [96]Z. Shi, S. Wu, and J. A. Szpunar, “Self-assembled palladium nanowires by electroless deposition”, Institute of Phys.Pub.Nanotech., vol.17, pp.2161-2166 (2006).
    [97]J. Shu, B. P. A. Grandjean, E. Ghali, and S. Kaliaguine, “Autocatalytic effects in electroless deposition of palladium”, J. Electronchem. Soc., vol.140, vol.11, pp. 3175-3180 (1993).
    [98]T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, “Preparation of palladium-coated V and V-15Ni membranes for hydrogen purification by electroless plating
    technique”, Inter. J. Hydrogen Energy, vol.28, pp.297-302 (2003).
    [99]Y. I. Chou, “Studies on fabrication, characterization and sensing of Pd/InP Schottky diode based hydrogen sensors”, doctor thesis, National Cheng-Kung University, Tainan, Taiwan (2005).
    [100]H. W. Pan, “Study on fabrication and hydrogen detection of Pd/Al0.3Ga0.7As and Pd/GaN Schottky diodes by electroless plating”, master thesis, National Cheng-
    Kung University, Tainan, Taiwan (2005).
    [101]G. O. Mallory, J. B. Hajdu, eds., Electroless Plating , American Electroplaters and Surface Finishers Society, Inc. and Noyes Publications, New York, (1990).
    [102]D. C. Harris, Quantitative Chemical Analysis, 2nd ed., W H Freeman & Co, (2006).
    [103]S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley (1981).
    [104]D. A. Neamen, Semiconductor Physics and Devices: Basic principle, 3rd ed., McGraw-Hill Professional (2003).
    [105]B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and. Their Applications, New York: Plenum (1984).
    [106]T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition-metal electrodes”, J. Electro. Mater., vol.12, no.1, pp.181-214 (1983).
    [107]L. P. Petersson, H. M. Dannetun, S. R. Karlsson, and I. Lundstrom, “Surface reaction of Pd studied with a hydrogen sensitive MOS structure and photo-electron spectroscopy” , Phys. Scripta, vol.25, pp.818-825 (1982).
    [108]J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/ absorption in thin films on hydrogen- sensitive field- effect devices: Observation of large –induced dipoles at the Pd- SiO2 interface”, J. Appl. Phys., vol.78, no.2 , pp. 988-996 (1995).
    [109]L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundstrom, “Hydrogen adsorption state at the external and internal palladium surfaces of a palladium-silicon
    dioxide-silicon structure”, J. Appl. Phys., vol.58, no.1, pp. 404-413 (1985).
    [110]J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/ absorption in thin films on hydrogen-sensitive field-effect devices:Observation of large hydrogen-induced at the Pd- SiO2 interface”, J. Appl. Phys., vol.78, no.2, pp.988-996 (1995).
    [111]R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A. Plut, “Thin film palladium and silver alloys and layers for metal-insulator- semiconductor sensors”, J. Appl. Phys., vol.62, pp.1074-1082 (1987).
    [112]Y. Morita, K. I. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium–gate FET”, Sens. Actu. B, vol.33, pp.96-99 (1996).
    [113]I. Lundstrom, “Hydrogen sensitive MOS-structures part1: principles and applications”, Sens. Actu. B, vol.1, pp.403-426 (1981).
    [114]L. G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundstrom, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on palladium”, Appl. Surf. Sci., vol.27, pp.275-284 (1986).
    [115]B. Hellsing, B. Kasemo, and V. P. Zhanov, “Kinetic of the hydrogen-oxygen reaction on platinum”, J. Catalysis, vol.132, pp.210-228 (1991).
    [116]M. Johansson, I. Lundstrom, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing
    environments”, J. Appl. Phys., vol.84, pp.44-51 (1998).
    [117]R. J. Silbey, , and R. A. Alberty, and M. G. Bawendi, Physical Chemistry, 4th ed., New York, NY: John Wiley & Sons (2004).
    [118]M. Eriksson, I. Lundstrom, and L.-G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces”, J. Appl. Phys., vol. 82, no.6, pp.3143-3146 (1997).
    [119]H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode ”, Sens. Actu. B, vol.92, pp.6-16 (2003).
    [120]A. M. M. M. Adam, N. Borras, E. Perez, P. L. Cabot, “Electrochemical corrosion of an Al-Mg-Cr-Mn alloy containing Fe and Si in inhibited alkaline solutions”, J. Power Sources, vol.58, no.2, pp.197-203 (1996).
    [121]Z. Liu, B. Huang, and M. Gu, “ Corrosion behavior of Al/AlNp composite in alkaline solution”, Mater. Lett., vol.60, pp.2024-2028 (2006).
    [122]C. T. Lin, “Fabrication and sensing characteristics of transistor-based hydrogen sensors”, master thesis, National Cheng-Kung University, Tainan, Taiwan (2005).
    [123]F. A. Lewis, “The palladium-hydrogen system: Structures near phase transition and critical points”, Int. J. Hydrogen Energy, vol.20, no.7, pp. 587-592
    (1995).
    [124]S. N. Paglieri, and J. D. Way, “ Innovations in palladium membrane research”, Separation and Purification Methods, vol.31, no.1, pp.1-169 (2002).
    [125]I. Simon, N. Barson, M. Bauer, and U. Weimar, “ Micromachined metal oxide gas sensors: opportunities to improve sensor performance”, Sens. Actu. B, vol. 73, pp.
    1-26 (1993).
    [126]J. Fogelberg, M. Eriksson, H. Dannetun, and L.-G. Petersson, “Kinetic modeling of hydrogen adsorption/ absorption in thin films on hydrogen-sensitive field- effect devices :Observation of large hydrogen-induced dipoldes at the Pd-SiO2 interface”, J. Appl. Phys., vol.78(2), pp.91-102 (1995).
    [127]L.-G. Petersson, H. M. Dannetun and I. Lundstrom, “The water-forming reaction on palladium”, Surf. Sci., vol.161, pp.77-100 (1985).
    [128]L.–G. Petersson, H. M. Dannetun, and I. Lundstrom, “Water production on palladium in hydrogen-oxygen atmospheres”, Surf. Sci., vol. 163, pp. 273-284 (1985).
    [129]I. Lundstrom, and L.-G. Petersson, “ Chemical sensors with catalytic metal gates”, J. Vac. Sci. Technol. A., vol.14, no.3, pp.1539-1545 (1996).
    [130]G. C. Wang, S. X. Tao, and X. H. Bu, “ A systematic theoretical study of water dissociation on clean and oxygen-preadsorbed transition metals”, J. Catalysis, vol.
    244, pp. 10-16 (2006).
    [131]Y. Cao, and Z. X. Chen, “Theoretical studies on the adsorption and decomposition of H2O on Pd(111) surface”, Surf. Sci., vol. 600, pp. 4572-4583 (2006).
    [132]M. Johansson, and L.-G. Ekedahl, “Hydrogen adsorbed on palladium during water formation studied with palladium membranes”, Appl. Surf. Sci., vol. 173, pp. 122-133 (2001).
    [133]G. Reisfeld, and M. Strongin, “A new technique for studying surface reactions: the reaction of hydrogen with high pressure oxygen on palladium”, Chem. Phys. Lett., vol.246, pp. 85-89 (1995).
    [134]L. K. Verheij, and M. B. Hugenschmide, “ On the mechanism of the hydrogen- oxygen reaction on Pt (111)”, Surf. Sci., vol.416, pp. 37-58 (1998).

    下載圖示 校內:2009-08-14公開
    校外:2009-08-14公開
    QR CODE