| 研究生: |
王昱凱 Wang, Yu-Kai |
|---|---|
| 論文名稱: |
以PDMAEMA-Br為起始劑合成含偶氮苯雙團聯共聚物及其光應答行為與螢光性質之研究 Synthesis of Azobenzene-Containing Diblock Copolymers Using PDMAEMA-Br as an Initiator and Study of Their Photoresponsive Behavior and Fluorescent Properties |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 偶氮苯 、團聯共聚物 、微胞 、光學異構化 |
| 外文關鍵詞: | azobenzene, block copolymer, micelle, photoisomerization |
| 相關次數: | 點閱:41 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具有光學異構化特性之偶氮苯單體,以具有溫度和pH值應答特性的聚甲基丙烯酸二甲氨基乙酯作為起始劑,並利用原子轉移自由基聚合法合成雙團聯共聚物poly(2-(dimethylamino)ethyl methacrylate)-block-poly(6-(4-(4-dimethylaminophenylazo)phenoxy-hexyl methacrylate) (PDMAEMA-b-PDMA-Azo),並觀察其在不同混合溶劑比例之下結構的變化。PDMAEMA-b-PDMA-Azo在中性溶劑(THF)中為random coil結構,隨著選擇性溶劑(H2O)在混合溶劑中的比例增加時,由於PDMAEMA鏈段對水的溶解度較PDMA-Azo鏈段佳,因此會逐漸形成以偶氮苯鏈段在內、PDMAEMA鏈段在外之微胞結構。
由於團聯共聚物具有偶氮苯之光學異構化特性,因此可利用紫外光引發其構型由穩定之反式異構物轉變為順式異構物;而在置於黑暗中則會引發逆反應,使其回復至反式異構物。我們將PDMAEMA-b-PDMA-Azo分別溶於不同比例的混合溶劑(THF/H2O)中,並透過紫外光-可見光分光光譜儀分析其光異構化行為,結果顯示當水的比例增加時,團聯共聚物的聚集會限制異構化所需要的自由體積,因此光異構化的速率會下降。另外,不同比例的混合溶劑也會影響偶氮苯分子在溶劑中的聚集型態,當水的比例增加時,偶氮苯聚集型態會從nonassociation及H-aggregate逐漸轉換至J-aggregate之聚集型態,因此當水的比例增加時,其吸收圖譜之最大吸收峰會有紅移的現象。
In this study, we synthesized an azobenzene monomer with photoisomerization properties. Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), which exhibits temperature and pH-responsive behavior, was used as the initiator to synthesize the diblock copolymer poly(2-(dimethylamino)ethyl methacrylate)-block-poly(6-(4-(4-dimethylaminophenylazo)phenoxy-hexyl methacrylate) (PDMAEMA-b-PDMA-Azo) through atom transfer radical polymerization. The structural changes of the diblock copolymer in various solvent mixtures were observed. PDMAEMA-b-PDMA-Azo forms a random coil structure in a neutral solvent (THF). As the proportion of selective solvent (H2O) in the mixed solvent increases, the PDMAEMA segment, which has better solubility in water compared to the PDMA-Azo segment, gradually forms micelle structures with the azobenzene segment inside and the PDMAEMA segment outside.
Due to the photoisomerization properties of the azobenzene in the diblock copolymer, UV light can induce its configuration to change from the stable trans isomer to the cis isomer. When placed in darkness, the reverse reaction occurs, returning it to the trans isomer. PDMAEMA-b-PDMA-Azo was dissolved in mixed solvents (THF/H2O) with different ratios, and its photoisomerization behavior was analyzed using UV-visible spectrophotometer. The results showed that as the water proportion increased, the aggregation of the diblock copolymer restricted the free volume necessary for isomerization, thereby reducing the rate of photoisomerization. Furthermore, different ratios of the mixed solvents affected the aggregation states of the azobenzene molecules. As the water proportion increased, the aggregation state of azobenzene shifted from nonassociation and H-aggregate to J-aggregate. Consequently, as the water proportion increased, a red shift in the maximum absorption peak of the absorption spectrum was observed.
1. T. Ikeda, O. Tsutsumi, Optical switching and image storage by means of azobenzene liquid-crystal films, Science, Vol. 268, 1995, 1873.
2. Y. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, E. Koyama, R. Azumi, H. Akiyama, H. Kihara, M. Yoshida, Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid–liquid patterning, Organic letters, Vol. 16, 2014, 5012.
3. D. Gindre, A. Boeglin, A. Fort, L. Mager, K. D. Dorkenoo, Rewritable optical data storage in azobenzene copolymers, Optics Express, Vol. 14, 2006, 9896.
4. J. Zhou, H. Xu, Z. Tong, Y. Yang, G. Jiang, Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water soluble pillar[6]arene as a strategy to construct the “compound vesicles” for controlled drug delivery, Materials Science and Engineering: C, Vol. 89, 2018, 237-244.
5. H. Jing, S. Richard Turner, Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers, Polymer, Vol.116, 2017, 572-586.
6. F. S. Bates, G. H. Fredrickson, Block copolymers—designer soft materials, Physics Today, Vol.52, 1999, 32-38.
7. S. B. Darling, Directing the self-assembly of block copolymers, Progress in Polymer Science, Vol.32, Issue 10, 2007, 1152-1204.
8. N. A. Lynd, A. J. Meuler, M. A. Hillmyer, Polydispersity and block copolymer self-assembly, Progress in Polymer Science, Vol.33, Issue 9, 2008, 875-893.
9. F. S. Bates, Polymer-polymer phase behavior. Science, Vol.251, 1991, 898-905.
10. T. Lindvig, M. L. Michelsen, G. M. Kontogeorgis, A Flory–Huggins model based on the Hansen solubility parameters, Fluid Phase Equilibria, Vol.203, Issues 1-2, 2002, 247-260.
11. Y. C. Tseng, S. B. Darling, Block copolymer nanostructures for technology, Polymers, Vol.2, 2010, 470-489.
12. M. W. Matsen, F. S. Bates, Unifying weak- and strong-segregation block copolymer theories, Macromolecules, Vol.29, 1996, 1091-1098.
13. F. S. Bates, G. H. Fredrickson, Block copolymer thermodynamics: theory and experiment, Annu. Rev. Phys. Chem, Vol.41, 1990, 525-527.
14. M. Stefik, S. Guldin, S. Vignolini, U. Wiesner, U. Steiner, Block copolymer self-assembly for nanophotonics, Chemical Society Reviews, Vol.44, 2015, 5076-5091.
15. M. Karayianni, S. Sispas, Self-assembly of amphiphilic block copolymers in selective solvents, Springer Series on Fluorescence, 2016, 27-63.
16. J. F. Gohy, Block copolymer micelles, Advances in Polymer Science, Vol.190, 2005, 65-136.
17. K. Mortensen, Structural studies of aqueous solutions of PEO–PPO–PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study, J. Phys.: Condens. Matter, Vol.8, 1996, 103-124.
18. E. Merino, M. Ribagorda, Control over molecular motion using the cis-trans photoisomerization of the azo group, Beilstein J Org Chem, Vol.8, 2012, 1071-1090.
19. B. N. Sunil, W. S. Yam, G. Hegde, Photoresponsive behavior of hydrophilic/hydrophobic-based novel azobenzene mesogens: synthesis, characterization and their application in optical storage devices, RSC Adv, Vol. 9, 2019, 40588.
20. H.-B. Cheng, S. Zhang, J. Qi, X.-J. Liang, J. Yoon, Advances in application of azobenzene as a trigger in biomedicine: Molecular design and spontaneous assembly, Adv. Mater, Vol.33, 2021, 1-2.
21. L. Xue, Y. Pan, S. Zhang, Y. Chen, H. Yu, Y. Yang, L. Mo, Z. Sun, L. Li, H. Yang, Fluorescent azobenzene-containing compounds: From structure to mechanism, Crystals, Vol.11, 2021, 840.
22. H. M. Dhammika Bandarab, S. C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., Vol.41, 2012, 1809-1825.
23. M. Sato, T. Kinoshita, A. Takizawa, Y. Tsujita, Photoinduced conformational transition of polypeptides containing azobenzenesulfonate in the side chains, Macromolecules, Vol.21, 1988, 1612-1616.
24. W. Freyer, D. Brete, R. Schmidt, C. Gahl, R. Carley, M. Weinelt, Switching behavior and optical absorbance of azobenzene-functionalized alkanethiols in different environments, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 204, 2009, 102-109.
25. A. Airinei, E. Rusu, V. Barboiu, Responsive behavior of 4-(N-maleimido)azobenzene in polymers with aromatic main chain and side chain linked units, J. Braz. Chem. Soc., Vol. 21, 2010, 489-495.
26. H. Fan, J. Wang, Q. Meng, X. Xu, T. Fan, Z. Jin, Preparation of photoirradiation molecular imprinting polymer for selective separation of branched cyclodextrins, Molecules, Vol.22, 2017, 288.
27. I. Mita, K. Horie, K. Hirao, Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film, Macromolecules, Vol.22, 1989, 558-563.
28. B. Kumar, K. A. Suresh, Kinetics of trans-cis isomerization in azobenzene dimers at an air-water interface, PHYSICAL REVIEW E, Vol. 80, 2009, 21601.
29. J. Niskanen, C. Wu, M. Ostrowski, G. G. Fuller, S. Hietala, H. Tenhu, Thermoresponsiveness of PDMAEMA. Electrostatic and stereochemical effects, Macromolecules, Vol. 46, 2013, 2331-2340.
30. T. Yuan, J. Dong, G. Han, G. Wang, Polymer nanoparticles self-assembled from photo-, pH- and thermo-responsive azobenzene-functionalized PDMAEMA, RSC Adv., Vol. 6, 2016, 10904-10911.
31. X. Tong, L. Cui, Y. Zhao, Confinement effects on photoalignment, photochemical phase transition, and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers, Macromolecules, Vol.37, 2004, 3101-3112.
32. S. Wu, L. Wang, A. Kroeger, Y. Wu, Q. Zhang, C. Bubeck, Block copolymers of PS-b-PEO co-assembled with azobenzene-containing homopolymers and their photoresponsive properties, Soft Matter, Vol. 7, 2011, 11535-11545.
33. K. Matyjaszewski, Atom transfer radical polymerization (ATRP): current status and future perspectives, Macromolecules, Vol.45, 2012, 4015-4039.
34. J. Ran, L. Wu, Z. Zhang, T. Xu, Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes, Progress in Polymer Science, Vol.39, 2014, 124-144.
35. M. Shimizu, T. Hiyama, Organic fluorophores exhibiting highly efficient photoluminescence in the solid state, Chem. Asian J., Vol.5, 2010, 1516-1531.
36. Y. Xiang, X. Xue, J. Zhu, Z. Zhang, W. Zhang, N. Zhou, X. Zhu, Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer, Polym. Chem., Vol.1, 2010, 1453-1458.
37. M. R. Han, Y. Hirayama, M. Hara, Fluorescence enhancement from self-assembled aggregates: Substituent effects on self-assembly of azobenzenes, Chem. Mater., Vol.18, 2006, 2784-2786.
38. P. Abbyad, W. Childs, X. Shi, S. G. Boxer, Dynamic Stokes shift in green fluorescent protein variants, PNAS, Vol. 104, 2007, 20189-20194.
39. X. Ran, H. Wang, L. Shi, J. Lou, B. Liu, M. Li, L. Guo, Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative, J. Mater. Chem. C, Vol.2, 2014, 9866.
40. M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D. Trauner, E. Y. Isacoff, A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an
ionotropic glutamate receptor, Journal of the American Chemical Society, Vol.135, 2013, 17683-17686.
41. R. Weissleder, A clearer vision for in vivo imaging, Nature Publishing Group, 2001.
42. R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu, Reversible photoisomerization of azobenzene-containing polymeric systems driven by visible light, Polymer Chemistry, Vol.4, 2013, 912.
43. Y. Yu, M. Nakano, T. Ikeda, Directed bending of a polymer film by light, Nature, Vol.425, 2003, 145-145.
44. Y. Yu, M. Nakano, A. Shishido, T. Shiono, T. Ikeda, Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene, Chem. Mater., Vol.16, 2004, 1637-1643.
45. H. K. Lec, K. Doi, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizava, B. Lee, Light-scattering-mode optical switching and image storage in polymer/liquid crystal composite films by means of photochemical phase transition, Polymer, Vol.41, 2000, 1757-1763.
46. M. Kondo, Y. Yu, T. Ikeda, How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers?, Angew. Chem. Int. Ed., Vol.45, 2006, 1378-1382.
47. P. Ramalho, Degradation of dyes with microorganisms studies with ascomycete yeasts, International Journal of Environmental Bioremediation & Biodegradation, Vol. 2, 2014, 5-11.
48. B. W. Gung, R. T. Taylor, Parallel combinatorial synthesis of azo dyes: A combinatorial experiment suitable for undergraduate laboratories, J. Chem. Educ., Vol. 81, 2004, 1630.
49. R. Dong, B. Zhu, Y. Zhou, D. Yan, X. Zhu, “Breathing” vesicles with jellyfish-like on–off switchable fluorescence behavior, Angew Chem Int Ed Engl, Vol.56, 2012, 11633-11637.
50. F. Meyer, A. Minoia, J. M. Raquez, M. Spasova, R. Lazzaroni, P. Dubois, Poly(amino-methacrylate) as versatile agent for carbon nanotube dispersion: an experimental, theoretical and application study, J. Mater. Chem., Vol.20, 2010, 6873-6880.
51. Y. Zhai, X. Chen, Z. Yuan, X. Han, H. Liu, A mussel-inspired catecholic ABA triblock copolymer exhibits better antifouling properties compared to a diblock copolymer, Polym. Chem., Vol. 11, 2020, 4622-4629.
52. L. Cui, Y. Zhao, A. Yavrian, T. Galstian, Synthesis of azobenzene-containing diblock copolymers using atom transfer radical polymerization and the photoalignment behavior, Macromolecules, Vol. 36, 2003, 8246-8252.
53. E. Stefanis, C. Panayiotou, Prediction of hansen solubility parameters with a new group-contribution method, Int J Thermophys, Vol. 29, 2008, 568-585.
54. R. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, I. Smirnova, On the road to biopolymer aerogels—dealing with the solvent, Gels, Vol. 1, 2015, 291-313.
55. M. J. Large, S. P. Ogilvie, A. A. K. King, A. B. Dalton, Understanding solvent spreading for Langmuir deposition of nanomaterial films: A Hansen solubility parameter approach, Langmuir, Vol. 33, 2017, 14766-14771.
56. P. Sivolapov, O. Myronyuk, D. Baklan, Synthesis of Stober silica nanoparticles in solvent environments with different Hansen solubility parameters, Inorganic Chemistry Communications, Vol. 143, 2022, 109769.
57. Y. Li, Y. Deng, X. Tong, X. Wang, Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer, Macromolecules , Vol. 39, 2006, 1108-1115.
58. C. M. Septani, O. Shih, Y. Q. Yeh, Y. S. Sun, Structural evolution of a polystyrene-block-poly(ethylene oxide) block copolymer in tetrahydrofuran/water cosolvents, Langmuir, Vol. 38, 2022, 5987-5995.
59. Y. C. Li, K. B. Chen, H. L. Chen, C. S. Hsu, C. S. Tsao, J. H. Chen, S. A. Chen, Fractal aggregates of conjugated polymer in solution state, Langmuir, Vol. 22, 2006, 11009-11015.
60. B. Hammouda, A new Guinier-Porod model, J. Appl. Cryst., Vol. 43, 2010, 716-719
61. M. K. Burdette-Trofimov, B. L. Armstrong, R. P. Murphy, L. Heroux, M. Doucet, A. M. Rogers, G. M. Veith, Probing clustering dynamics between silicon and PAA or LiPAA slurries under processing conditions, ACS Applied Polymer Materials, Vol. 3, 2021, 2447-2460.
62. J. M. Lehn, Physical Properties of Polymers, 2015.
63. I. Akiba, K. Sakurai, Characterizing block-copolymer micelles used in nanomedicines via solution static scattering techniques, Polymer Journal, Vol. 53, 2021, 951-973.
64. B. Hammouda, Analysis of the Beaucage model, J. Appl. Cryst., Vol. 43, 2010, 1474-1478.
65. J. Teixeira, Small-angle scattering by fractal systems, J. Appl. Cryst., Vol. 21, 1988, 781-785.
66. J. Pedersen, Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores, J. Appl. Cryst., Vol. 33, 2000, 637-640.
67. M. Homocianu, A. Airinei, D. Dorohoi, Solvent effects on the electronic absorption and fluorescence spectra, Journal of Advanced Research in Physics, Vol. 2, 2011, 11105.
68. B. Herman, J. R. Lakowicz, I. D. Johnson, M. W. Davidson, Solvent effects on fluorescence emission, Java Tutorial.
69. E. Tasal, E. Gungor, T. Gugor, Study in the solvent polarity effects on solvatochromic behaviour of pomiferin, Physical Chemistry, Vol. 6, 2016, 33-38.
70. C. E. A. De Melo, L. G. Nandi, M. Domínguez, M. C. Rezende, V. G. Machado, Solvatochromic behavior of dyes with dimethylamino electron-donor and nitro electron-acceptor groups in their molecular structure, Journal of Physical Organic Chemistry, Vol. 28, 2014, 250-260.
71. Z. Wu, R. Xue, M. Xie, X. Wang, Z. Liu, M. Drechsler, J. Huang, Y. Yan, Self-assembly-triggered cis-to-trans conversion of azobenzene compounds, J. Phys. Chem. Lett., Vol. 9, 2018, 163-169.
72. Y. Li, N. Zhou, W. Zhang, F. Zhang, J. Zhu, Z. Zhang, Z. Cheng, Y. Tu, X. Zhu, Light-driven and aggregation-induced emission from side-chain azoindazole polymers. J. Polym. Sci. A Polym. Chem., Vol. 49, 2011, 4911-4920.
73. W. Su, K. Han, Y. Luo, Z. Wang, Y. Li, Q. Zhang, Formation and photoresponsive properties of giant microvesicles assembled from azobenzene-containing amphiphilic diblock copolymers, Macromolecular Chemistry and Physics, Vol. 208, 2007, 905-1024.
74. Q. Bo, Y. Zhao, Fluorescence from an azobenzene-containing diblock copolymer micelle in solution, Langmuir, Vol. 23, 2007, 5746-5751.
75. R. Padmakumarim, V. Ravindrachary, B. K. Mahantesha, R. Sahanakumari, R. F. Bhajantri, M. H. Anandalli, Dopant dependent microstructural and fluorescence properties of biodegradable polymer films for DSSC application, J. Phys.: Conf. Ser., Vol. 1172, 2019, 12079.
76. Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, F. Zhang, Photoresponsive J-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its Third-order optical nonlinearity, J. Phys. Chem. B , Vol. 112, 2008, 7387-7394.
77. S. Patnaik, A. K. Sharma, B. S. Garg, R. P. Gandhi, K. C. Gupta, Photoregulation of drug release in azo-dextran nanogels, International Journal of Pharmaceutics, Vol. 342, 2007, 184-193.
78. N. J. Dunn, W. H. Humphries, A. R. Offenbacher, T. L. King, J. A. Gray, pH-dependent cis-trans isomerization rates for azobenzene dyes in aqueous solution, J. Phys. Chem. A, Vol. 113, 2009, 13144-13151.
79. R. C. Advincula, E. Fells, M. K. Park, Molecularly ordered low molecular weight azobenzene dyes and polycation alternate multilayer films: aggregation, layer order, and photoalignment, Chem. Mater.,Vol. 13, 2001, 2870-2878.
校內:2029-08-13公開