簡易檢索 / 詳目顯示

研究生: 劉愷文
Liu, Kai-wen
論文名稱: 利用動態網格模型達成多台相機追蹤之手指表面重構與運動評估
Finger Surface Motion Reconstruction and Evaluation Using Multi-camera Tracking with Active Grid Model
指導教授: 孫永年
Sun, Yung-Nien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 卡爾曼濾波器皮膚滑動網格追蹤
外文關鍵詞: mean shift, skin movement, Kalman filter, Tracking
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手部運動評估對於手部復健與治療的研究上具有重要意義,傳統上運動參數的取得是藉由量測黏貼於手指表面的標記點三維座標而得,可是在量測的過程中並未考慮標記點隨皮膚滑動的影響,而造成手指運動參數量測的失真,因此,皮膚與手指運動的關聯性是相當值得探討的主題,有鑒於此,我們藉由電腦視覺的技術追蹤及重建標記在手指上的網格,依據其結果並結合動態螢光攝影影像資訊驗證並量化皮膚滑動。
    由於手部運動具有高自由度及限制性,因此系統結合多台相機降低遮蔽帶來的問題,本論文主要分成兩部分:預測並追蹤網格資訊,以及提出一套新的方法來量測皮膚滑動。在預測網格的部分我們採用了卡爾曼濾波器來預測網格的三維資訊,並且將此投影到影像平面上,提供追蹤時的初始位置,追蹤的部分則是結合Mean-shift演算法與Dual template matching並結合結構性資訊來定位出每個時間點的二維網格,選擇可靠點重構出三維網格;為了驗證皮膚滑動的存在並量化,量測滑動程度的部分我們藉由手動對位求出骨頭座標系的轉換關係,即可求出在不同時間點的未滑動點座標,並與重構網格投影在動態螢光攝影平面的滑動點比較,藉此定義出位移向量。
    根據效能實驗顯示出系統在二維追蹤上有著良好的追蹤效果,我們也可根據重構出的網格量測到手指關節運動時,手部表面面積的變化,並結合動態螢光攝影獲得皮膚滑動情形。藉此分析病患手部運動時皮膚的形變情況是否有所異常,進而建立更完整的病歷資訊。

    In hand rehabilitation and treatment, kinematic assessment of hand plays an important role. Traditionally, the kinematic parameters were measured by the 3D coordinates of markers attached to the skin surface, but the process of measurement doesn’t include the effect of skin movement with respect to the bone. Therefore, the relationship between skin and finger motion is worthwhile to research. In this thesis, we have developed an analysis system to measure the extent of skin movement by utilizing the computer vision techniques to reconstruct the grid attached to the finger. According to the result, the validation and quantization of skin movement can be done by utilizing both the video and fluoroscopy to capture the image information of muscular skeletal motion.
    Since the finger motion is with high degrees of freedom and also highly constrained. Therefore, our system combines multiple cameras to deteriorate the effect of occlusion, and increase the accuracy of reconstruction simultaneously. The thesis consists of two parts: predicting and tracking the grids and providing a new method to measure the skin movement. In the grid prediction, we apply the Kalman filter to predict 3D grid, and project it back to the image plane. The projected grid provides the initial position of tracking process. At the tracking stage, we utilize the mean-shift algorithm and dual template matching to locate the 2D grid in motion. In measuring the skin movement, we use the manual registration to calculate the transformation of BCS(Bone coordinate system). Then, we can get the coordinate of markers without skin movement by the transformation at different frame. The offset vector of skin movement is defined by the points with and without skin movement, and the point with skin movement is calculated by the projection of reconstructed grid on the projection plane of fluoroscopy.
    According to the performance experiment, the system has good tracking result. We can measure the deformation extent of finger surface from the reconstructed 3D grid, and find the skin movement by comparing with markers in fluoroscopy images. The system can analyze whether the skin deformation is normal or not when the patient moves finger motion. The more detailed case report on finger motion can be created based on these measurements.

    目錄 第1章、 序論 1 1-1. 研究動機 1 1-2. 相關研究 2 1-3. 論文架構 7 第2章、 研究方法 10 2-1. 影像特徵描述與擷取 10 2-1-1 標記點分割 10 2-1-2 利用分群演算法定位標記點 12 2-2. 網格初始化 13 2-2-1 建立虛擬模型 15 2-3. 追蹤演算法 16 2-3-1 Cross Correlation 18 2-3-2 Mean shift 19 2-3-3 Dual template matching 24 2-3-4 Pseudo model constraint and update 27 2-3-5 Template update 29 2-4. 三維網格重建 32 2-5. 卡爾曼濾波器 34 2-5-1 追蹤結果 38 2-6. 研究方法討論 40 第3章、 實驗設計與結果討論 41 3-1. 前置作業 41 3-1-1 標記點與網格設計 41 3-1-2 相機校正 42 3-2. 系統效能實驗 44 3-2-1 效能實驗環境 44 3-2-2 二維網格追蹤評估 46 3-2-3 三維網格重構評估 48 3-3. 皮膚滑動量測 49 3-3-1 實驗環境 49 3-3-2 前置作業 50 3-3-3 量測方法 55 3-3-4 量測結果 57 3-3-5 三維滑動模擬 64 3-4. 皮膚表面積量測 65 3-4-1 實驗結果 65 3-5. 實驗討論 66 第4章、 結論與未來展望 68 4-1. 結論 68 4-2. 未來展望 69 參考文獻...................................................................................................................... 71

    [1]Li-Chieh Kuo, William P. Cooney III , Mineo Oyama, Kenton R. Kaufman,Fong-Chin Su, Kai-Nan An, “Feasibility of using surface markers for assessing motion of the thumb trapeziometacarpal joint,” Clinical Biomechanics,18:558-563,2003
    [2] Wen-Chieh Lin, Yanxi Liu, “A Lattice-Based MRF Model for Dynamic Near-Regular Texture Tracking,” IEEE Trans. PAMI29(5)(2007) 777 – 792
    [3] Arulampalam, M.S. Maskell, S. Gordon, N. Clapp, T. ,“A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” Signal Processing, IEEE Transactions , vol. 50, iss.2, pp. 174-188, Feb 2002.
    [4] Baker,S., and Matthews,I.,“Lucas-Kanade 20 Years On: A Unifying Framework,” International Journal of Computer Vision, 53(3), pp221–255, 2004.
    [5] B Liu, R Manner, “An Efficient and Accurate Method for 3D-Point Reconstruction from Multiple Views,” International Journal of Computer Vision 65(3), 175–188, 2005.
    [6]Dorin Comaniciu, and Peter Meer, “Mean Shift: A Robust Approach Toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.
    [7] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Tracking,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564-575, May 2003.
    [8] B Liu, R Manner, “An Efficient and Accurate Method for 3D-Point Reconstruction from Multiple Views, “International Journal of Computer Vision 65(3), 175–188, 2005.
    [9] M. Zaki, M. Y. El Nahas and M. Youssef, “EMBOT: An enhanced motion-based
    object tracker,” The Journal of Systems and Software, vol. 69, no. 1-2, pp.
    149-158, Jan. 2004
    [10] G. Rigoll, H. Breit and F. Wallhoff, “Robust tracking of persons in real-world
    scenarios using a statistical computer vision approach,” Image and Vision
    Computing, vol. 22, no. 7, pp. 571-582. July 2004.
    [11] G. Welch and G. Bishop, “An introduction to the kalman filter,” Technical
    Report TR 95-041, University of North Carolina, Department of Computer
    Science, 1995.
    [12] Cappozzo, A., Cappello, A., Croce, U.D., Pensalfini, F., 1997. “Surface-marker cluster design criteria for 3-D bone movement reconstruction,” IEEE Transaction on Biomedical Engineering 44(12), 1165–1174.
    [13] Lucchetti, L., Cappozzo, A., Cappello, A., Croce, U.D., 1998. “Skin movement artifact assessment and compensation in the estimation of knee joint kinematics,” Journal of Biomechanics 31, 984–997.
    [14] Alexander, E.J., Andriacchi, T.P., 2001. “Correcting for deformation in skin-based marker systems,”Journal of Biomechanics 34 (3),355–361.
    [15]Jae Hun Ryu, Natsuki Miyata, Makiko Kouchi, Masaaki Mochimaru, Kwan H. Lee, “Analysis of skin movement with respect to flexional bone motion using MR images of a hand” Journal of Biomechanics 39,(2006) 844 - 852.
    [16] E.H. Garling, B.L. Kaptein, B. Mertens, W. Barendregt, H.E.J. Veeger,
    R.G.H.H. Nelissen, E.R. Valstar “Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers,” Journal of Biomechanics 40,(2007) S18 - S24
    [17] 陳彥廷、孫永年,“以模型為基礎之電腦手指連續運動影像分析系統”,國立成功大學資訊工程研究所碩士論文,2006。
    [18]. 何聖斌、孫永年,“使用多台相機的三維手指影像運動分析系統”,國立成功大學資訊工程研究所碩士論文,2007。
    [19]http://en.wikipedia.org/wiki/Image:Scheme_human_hand_bones-en.svg
    [20]http://en.wikipedia.org/wiki/Image:Gray337.png
    [21]http://en.wikipedia.org/wiki/Hinge_joint
    Wen-Chieh Lin, Yanxi Liu, “A Lattice-Based MRF Model for Dynamic Near-Regular Texture Tracking,” IEEE Trans. PAMI29(5)(2007) 777 – 792
    [22]Igor Guskov, Sergey Klibanov, Benjamin Bryant, “Trackable surfaces,” SIGGRAPH(2003)
    [23]Ryan White, Keenan Crane, D.A. Forsyth, “Capturing and Animating Occluded Cloth,” SIGGRAPH(2007)

    下載圖示 校內:2011-08-27公開
    校外:2011-08-27公開
    QR CODE