簡易檢索 / 詳目顯示

研究生: 張恩澤
Chang, En-Tse
論文名稱: 探勘內生微生物基因組:比較赤箭品種塊莖共生真菌生物多樣性
Deciphering the endophytic microbiomes: study the fungal communities in rhizomes of different Gastrodia spp.
指導教授: 李瑞花
Lee, Ruey-Hua
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 赤箭蜜環菌非光合作用蘭多源基因體學天麻素
外文關鍵詞: Gastrodia, Armillaria, non-photosynthetic orchids, metagenomics, gastrodin
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 赤箭又名天麻(Gastrodia sp.)為蘭科赤箭屬的多年生草本腐生蘭,全世界現發現約有50-60種,為蘭科之中最大的真菌異營屬,天麻無法執行光合作用,一生從種子萌芽到成長熟成都需要和蘭花菌根菌形成共生關係吸取養分。天麻主要分布集中於亞洲,為高經濟藥材植物,台灣至少有19赤箭屬的分類群,其中12種目前只發現分佈於台灣,除了G. elata能人工大量栽培外,其他赤箭原生品種尚未能人工栽培開發利用,主要是因為對赤箭和菌根菌共生生理尚未了解,加上無法仿造和自然完全相同的獨特菌相及生長環境,種子發芽率低、植株無法正常發育因而無法大量生產。
    本研究計畫目的為研究赤箭及共生菌相互作用機制。在這個研究中,我們已經從棲息地收集了八個赤箭品種。在這些收集的品種間,我們選擇相對族群數較多的進行下一步分析。目前我們已經成功的建立根莖繁殖在冬赤箭及日本赤箭。我們也用微生物培養方式從冬赤箭、春赤箭及三個來自中國不同來源的高赤箭塊莖,收集了33種內生真菌。幾乎我們所收集的菌種都為病原菌,尤其是在成熟的高赤箭塊莖。也無法分離出應該是在高赤箭培養中最主要的蜜環菌。並建立了蜜環菌及赤箭共培養方式及條件並且發現蜜環菌對於高赤箭是非常專一性的共生關係,其他種類赤箭無法使用蜜環菌進行相同方式來培養。從以上這些發現我們提出了假說,1)每一品種之赤箭都有獨特的微生物群來幫助其生長及發育,2)蜜環菌對於高赤箭是在生長初期階段才需要的,3)在不同品種赤箭本生基因調控和內生微生物族群會交互作用並影響其本身生物活性酚類化合物-天麻素的產生。為了測試這些假說,首先我們檢測了來自不同人工培養及野外採集的赤箭和六個不同品系的蜜環菌並利用HPLC進行天麻素的測定。從結果明顯顯示在不同的赤箭品種、新鮮高赤箭以及經過後熟處理高赤箭的天麻素含量都不同。我們也利用多源基因體學來解釋真菌菌相結構深度及廣度,檢測了四個赤箭品種(高赤箭、冬赤箭、爪哇赤箭和春赤箭)。我們設計分子標記在六個條碼區域並利用Illumina MiSeq high-throughput paired-end定序。藉由比較多源基因體學結果,可讓我們了解不同赤箭塊莖真菌菌相如何影響植物本身生長及發育;也能從中得知真菌菌相如何影響塊莖之天麻素的產生。

    Gastrodia sp. is myco-heterotrophic (MH) orchid belong to Orchidaceae. The orchid is achlorophyllous laking ability for photosynthesis. Whole life completely depends on symbiosis with different mycorrhizal conterparts for nutrients from seed germination to reproduction. There are 50-60species mainly found in Asia. Taiwan alone has 19 species and 12 of them are endemic. Other than G. alata, most of these species have not been evaluated for utilization. We know very little the physiology of Gastrodia sp. and microbial symbiosis. Gastrodia sp. is unique plant receive little attention regardless its importance in medicine, ecology and conservation. For this research, we have collected 8 Gastrodia species from their natural habitats. Among these, we selected species that are relative abundant for our work. We have successful established rhizome-like propagules for G. pubilabiata, and G. niponica in vitro. We have also isolated 33 endophytic fungi by microbial culture using rhizomes of G. pubilabiata, G. fontinalis, and 3 different sources of G. elata from China. Nearly all the fungi we isolated are pathogenic from all the species we examined especially the G. elata mature rhizomes. We also could not isolate Armillaria mellea which supposed to be the dominant fungi in cultivated G. elata. We have also established co-culture method for Armellaria and Gastrodia sp. under in vitro condition and found A. mellea only can co-culture with G. elata but no other species. These findings lead us to hypothesize 1) each Gastrodia specie has its unique microbiome required for plant growth and development, 2) A. melllea is only required for initial growth of young G. elata rhizome, and 3) interaction of genotype and microbiome determine the levels of bioactive phenolic compound-gastrodin production in different Gastrodia species. To test these, we first measured gastrodin levels in different cultivated and wild Gastrodia species and 6 stains of A. melllea collected by HPLC. Our data shows significant differences in gastrodin levels in the rhizomes of cultivated G. elata obtained from different sources in China using fresh and dried samples, and in different Gastrodia species. We have used metagenomic approach to decipher fungal community structure in breadth and depth for 4 Gastrodia species (G. elata, G. pubilabiata, G. javanica and G. fontinalis). We used Illumina MiSeq high-throughput paired-end sequencing by designing molecular markers for six barcoding regions. Comparative metagenomics can lead to our understanding how fungal microbiome in different Gastrodia species affect plant growth and development; and perhaps also give use some clue how fungal microbiome affect gastrodin production in the rhizomes.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VI 壹、 前言 1 1 蘭科 1 2 非光合作用蘭(non-photosynthetic orchids) 1 3 赤箭屬(Gastrodia) 2 3.1 赤箭屬世界分布情形 2 3.2 赤箭屬台灣分布情形 2 3.3 赤箭屬生理特性 3 3.4 高赤箭化合物組成及藥用功能 3 4 蜜環菌(Armillaria mella) 4 4.1 蜜環菌簡介 4 4.2 形態特徵 4 5 蘭科植物與共生真菌之研究 5 6 微生物多樣性研究重要性及目的 7 7 微生物多樣性研究目前方法及限制 8 7.1 傳統特性 8 7.2 分子特性 9 8 多源基因體學Metagenomics 11 9 實驗目的和目標 12 貳、 實驗材料與方法 13 1 實驗材料 13 2 赤箭採集方法 13 3 赤箭組織培養方法 14 4 蜜環菌組織培養測試 14 5 赤箭塊莖內生菌分離培養方法 14 6 赤箭塊莖和真菌genomic DNA(gDNA)萃取 14 7 DNA分析與定量 15 8 聚合酶連鎖反應 16 9 基因Cloning 16 10 gDNA genotyping - Sanger method 17 11 Metagenomics DNA條碼設計 17 12 Quantitative PCR (Q-PCR) 18 13 Metagenomics sequencing by MiSeq Illumina technology 18 14 Bioinformation for metagenomics 18 15 天麻素測定 19 參、 實驗結果 21 一、台灣野生赤箭品種野地收集 21 二、測定不同赤箭品種和蜜環菌二次代謝物天麻素(gastrodin)含量 23 三、蜜環菌收集、genotyping及培養 23 四、 蜜環菌株的基因多形性 24 五、 用塊莖組織培養並分離台灣野生赤箭不同共生菌根菌 24 六、DNA條碼設計 25 七、多源基因體分析 25 肆、 討論 29 一、天麻素含量與蜜環菌、品種和樣品來源的相關性 29 二、蜜環菌菌絲型態及培養條件 30 三、蜜環菌組培菌種與多源基因分析差異 30 四、赤箭組培塊莖分離菌相種類 31 五、DNA barcode辨識種類能力 32 伍、 結論 33 陸、 參考資料 34 柒、 附錄 76

    Alexopoulos, C. J. & Mims, C. W. (1979). Introductory Mycology, 3rd ed. Wiley, NewYork.
    Arditti, J. (1992). Fundamentals of orchid biology, wiley-interscience, New York.
    Azcon-Aguilar, C., et al. (1996). Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola mill. Agronomie 16: 647-652.
    Badali, H., et al. (2008). Biodiversity of the genus Cladophialophara. Studies in Mycology. 61:175-191.
    Berch, S. M., et al. (2002). Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant and Soil 244: 55-66.
    Berube, J.A. & Dessureault, M. (1989). Morphlogical studies of the Armillaria mellea complex: two new species, A. gemina amd A. calvescens. Mycologia 81(2): 216-225.
    Bidartondo, M. I. (2005). The evolution of myco-heterotrophy. New Phytol 167: 335-352
    Blumberg, R. & Powrie, F. (2012). Microbiota, disease, and back to health: a metastable journey. Sci Transl Med 4: 137.
    Borelli, D. (1980). Causal agents of chromoblastomycosis (Chromomycetes.) Proceedings of the 5th Interational conference on Mycoses pp. 335-340.
    Borewicz, K., et al. (2012). Longitudinal analysis of the lung microbiome in lung transplantation. FEMS Microbiol Lett.
    Bosser, J. (2006). Contribution to the study of Orchidaceae from Madagascar, the Comoro islands and the Mascarenes. 35. Description of a new Oeceoclades from Madagascar, and notes on three new genera for the Mascarenes. Adansonia 28(1): 45-54
    Breuillin, F., et al. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 64: 1002–1017
    Bruce, A., Smith, S.E., and Tester, M. (1994). The development of mycorrhizal infection in cucumber: Effects of P supply on root growth, formation of entry points and growth of infection units. New Phytol. 127: 507–514.
    Burges, A. (1958). Microorganisms in the soil, Hutchinson Univ. Lib., London.
    Carlile, M. J. & Watkinson, S. C. (1994). The fungi. Academic press Ltd, London. pp329-340.
    Casselman, A. (2007). Strange but ture: the largest organism on earth is a fungus. Scientufic american.
    Chase, M. W., et al. (2003). DNA data and Orchidaceae systematic: a new phylogenetic classification. In Dixon, K.M., S. P. Kell, R L. Barrett & P.J. Cribb (eds.): Orchid Conservation: 69-89. Natural History Publications, Kota Kinabalu, Sabah.
    Chen, Y. H., et al. (2013). The floral organs development and microsporogenesis in Phalaenopsis orchid. Contribution No. 0792 from Taichung DARES, COA.
    Clements, M. & R. Ellyard. (1979). The symbiotic germination of Australian terrestrial orchids. Amer. Orchid Soc. Bull. 48: 810-815
    Cunnington, J. H., et al. (2003). Molecular identification of anamorphic powdery mildews (Erysiphales). Australasian Plant Pathology. 32: 421-428.
    Dangeardm, M. M. & Armand, I., (1898). Observations de biologie cellulaire(Mycorhizes d’ Ophrys aranifera). Revue de Mycologie, Toulouse 20, 13-8, Table 182.
    Dearnaley, J. D. W. & Le Brocque, A. F., (2006). Molecular identification of the primary root fungal endophytes od Dipodium hamiltonianum (yellow hyacinth orchid). Aust J Bot. 54: 487-491.
    Dell, B., et al. (2003). Ectomycorrhizal fungi in dry and wet dipterocarp forests in northern
    Thailand - diversity and use as food. Murdoch University, Perth, Australia.
    D’ Onofrio, A., et al. (2010). Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol. 17: 25-264.
    Dressler RL (1993). Phylogeny and Classification of the Orchid Family. Diosocorids Press, Portland, OR, USA
    Druzhinina, I. S., et al. (2006). Global carbon utilization profiles of wild-type, mutant and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72: 2126-2133.
    Druzhinina, I. S., et al. (2005). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology 42: 813-828.
    Feng, H., et al. (2008). Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319: 1096-1100.
    Gary, (1981). National audubon society field guilde to North American mushrooms. Lincoff pp.736-737.
    Gary, E. H., et al. (2004). Trichoderma species- opportunistic, avirulent plant symbionts. Microbiology 2: 43-56.
    Giannattasio, S., et al. (2005). Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354: 93-8.
    Grard, G., et al. (2012). A novel rhabdovirus associated with acute hemorrhagic fever in fever in central Africa. PLoS Pathog 8: e1002924.
    Handelsman, J., et al. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology 5(10): R245-R249.
    Harley, J. L. & Smith, S. E. (1983). Mycorrhizal Symbiosis. Academic Press, Toronto.
    Herbert, P. D. N. & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Sys. Biol. 54(5):852-859.
    Hirsch, P. R., et al. (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Bioligy & Biochemistry 42: 878-887.
    Hobbs, C. (1986). Medicinal mushrooms – an exploration of tradition, healing and culture. Botanica Press.
    Holguin-Pena, R. J., et al. (2012). First report of a Bionectria sp. associated with a stem rot of cardon cactus (Pachycereus pringlei) in Baja California Sur, Mexico. APsent 96(2): 292.
    Jenny King. (2011). The coralroot orchid. Orchids in Northern Washington state. Silvercrown Mountain Outdoor School. Retrieved 10.
    Jones, D. L. (1991). New taxa of Australian orchidaceae. Australia Orchid Research 2. Australian Orchid Foundation, Melbourne.
    Jones, D. L. (2004). Miscellaneous new species, new genera, reinstated genera and new combinations in Australian Orchidaceae. The Orchadian Sci Suppl 14: 1-16.
    Juan, P. S., et al. (2006). Diverse tullasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycological Research 11: 1257-1270.
    Keller, N. P., et al. (2005). Fungal secondary metabolism - from biochemistry to genomics. Nature reviews Microbiolgy 3: 937-947.
    Kikuchi, G., et al. (2008a) In vitro symbiosis between Gastrodia elata Blume (Orchidaceae) and Armillaria Kummer (Tricholomataceae) species isolated from the orchid tuber. J. Jpn Bot. 83: 77–87.
    Kikuchi,G., et al. (2008b) Fungal symbiont and cultivation test of Gastrodia elata Blume (Orchidaceae). J. Jpn Bot. 83: 88–95.
    Kim, S., et al. (2003). The phylogeny ofphalaenopsis species. Proceedings of NIOC2003, Nagoya, Japan.
    Koen, I., et al. (2012). Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. Plos one 7(5): 1-11.
    Koljalg, U., et al. (2005). UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166: 1063-1068
    Korhonen K. and Hintikka,V. (1974). Cytological evidence for somatic diploidization in dikaryotic cells of Armillariella mellea. Arch. Microbiol. 95: 187-192.
    Kosti, I., et al. (2010). Comparative analysis of fungal protein linases and associated domains. BMC genomics 11: 133.
    Kurtzman, C. P. & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonic van Leeuwenhoek 73: 331-371.
    Lagier, J. C., et al. (2012). Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2: 136.
    Lan, J., et al. (1994). Study on symbiotic relation between Gastrodia elata and Armillariella mellea by autoradiography. Acta Mycol Sin 13:219–222.
    Leake, J. R. (2005). Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the “saprophytic” plant myth. Mycologist 19: 113-122.
    Lee, S. Y. & Chuang, Y. K. (2010). The evolution and development of DNA sequencing technology. J Biomed Lab Sci. 22(2): 49-58.
    Leou, C. S. (2000). Gastrodia. In: Huang, T. C. et al. (eds.), Flora of Taiwan, 2nd ed. 5: 890-896. Editorial Committee, Dept. Bot., NTU, Taipei.
    Maekawa, F. (1971.) The Wild Orchid of Japan in Colour. Seibundo-shinkousha, Tokyo.
    Masuhara, G. & Katsuya, K. (1994). In situ and in vitro specificity between Rhizoctonia spp. & Spiranthes sinensis (Persoon.) Ames. Var. amoena (M. Beiberstein) Hara (Orchidaceae.). New phytologisr 127: 711-718.
    Menge, J.A., Johnson, E.L.V., and Platt, R.G. (1978). Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol. 81: 553–559.
    Monrone, K. T., et al. (2011). In situ hybridization for specific fungal organisms in acute invasive fungal rhinosinusitis. American society for Clinical pathology 135(2): 190-199.
    Ogura-Tsujita, Y., et al. (2009). Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confuse gains carbon from saprotrophic Mycena. Proc R Soc Lond B. 276: 761-768.
    Olsson, P. A., et al. (2010). Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72(1): 125-131
    Padhye, A., et al. (1996). Chromoblastomycosis caused by Exophiala spinifera. Clinical infectious diseases. 22: 331-3335
    Paul, D. N. Hebert, et al. (2003). Biological identifications through DNA barcodes. The riyak society 270: 313-321.
    Perkins, A. J. & McGee, P. A. (1995). Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani, in relation to its host, Pterostylis acuminata, in the field. Australian Journal of Botany 43, 565-575.
    Pragman, A. A., et al. (2012). The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7: e47305.
    Polaskova, P., Herszage, J. & Ebeler, S. E. (2008). Wine flavor: chemistry in a glass. Chemical Society Reviews. 37: 2478-2489.
    Porras-Alfari, A., et al. (2011). Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103: 10-21.
    Proter, T. M. & Golding, G. B. (2012). Factors that affect large subunit ribosomal DNA amplicon sequencing studies of fungal communities: classification method, primer choice and error. PLoS ONE 7(4): e35749.
    Pridgeon, A. M., P. J. Cribb, M. W. Chase, F. N. Rsmussen. (2005). Genera Orchidacearum 4. Epidendroideae (Part One). Oxford University Press, Oxford.
    Rasmussen. H. N. (1995). Terrestrial orchids. From seed to mycotrophic plant. Cambridge University Press, Cambridge.
    Redecker, D. (2000). Specific PCR primers to identify arbuscular mycorrhiza fungi within colonized roots Mycorrhiza 10(2): 73-80.
    Rhoads, D. D., et al. (2012). Comparsion of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13: 2535-2550.
    Riesenfeld, C. S., et al. (2004). Metagenomics: genomic analysis of microbial communities. Ann. Rev. Gene. 38: 525-552.
    Rios, A., et al. (2000). Efficient genetic analysis of fungal samples. Preparative biochemistry and biotechnology 30(2): 145-153.
    Robert, W. B. (1964). Nectria canker of hardwoods. Forest service. pp. 1-7.
    Rossello-Mora, R. & Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiology reviews 25: 39-67.
    Schildkraut, C. L., et al. (1962). Determination of the base composition of deoxyribonucleic acid from buoyant density in CsCl. Molecular Biology 4(6): 430-443.
    Schmidt, O. & Moreth, U. (2002). Data bank of rDNA-ITS sequences from building-rot fungi for their identification. Wood Science and Technology 36: 429-433.
    Schmidt, S. K., et al. (2011). Fungal communities at the edge: Ecological lessons from high alpine fungi. Fungal Ecology 1-10.
    Schoch, C. L., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241-6246.
    Simon, C. & Daniel, R. (2011). Metagenomic Analyses: Past and Future with Reference to Seeding Nutrition. New Phytologist 65(4): 488-499.
    Styger, G., Prior, B. & Bauer, F. (2011). Wine flavor and aroma. Journal of Industrial Microbiology & Biotechnology. 38: 1145-1159.
    Taylor, D. L. & Bruns, T. D. (1997). Independent, specialized invasions of ecomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Nat Acad Sci 94: 4510-4515
    Tan, Y. S., et al. (2009). Marasmius sensu stricto in Peninsular Malaysia. Fungal Diversity. 37: 9-100.
    Tom, Lawrie. (2010). Worlds first night-flowering orchid discovered. Australian Geographic.
    Tuyama, T. & Sugino, T. (1966). Notes on Gastrodia of Japan 3. J Jap Bot 41: 339-346.
    Vilgalys, R. and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238-4246.
    Wang, H., et al. (1997). A cytological study on the nutrient-uptake mechanism of a saprophytic orchid Gastrodia elata. Acta Bot Sin 39: 500-504.
    Warcup, J. H. (1973). Symbiotic germination of some Australian terrestrial orchids. New phytol. 72: 387-392.
    White, T. J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols, A Guide to Methods and Applications.
    Wu, Z., et al. (2002). Evaluation of PCR primers and PCR conditions for specific detection of common airborne fungi. Journal of Environmental Monitoring 4(3): 377-382
    Xu, J. T. & Mu, C. (1990). The relation between growth of Gastrodia elata protocorms and fungi. Acta Bot Sin 32:26–31.
    Yuki, O. T., et al. (2009). Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confuse gains carbon from saprotrophic Mycena. Proc Biol Sci 276(165): 761-767.
    Zelles, L. & Alef, K. (1995). Methods in applied soil microbiology and biochemistry. Academic Press, London, pp. 422-439.
    Zelmer, C.D., Cuthbertson, L. & Currah, R. S. (1996). Fungi associated with terrestrial
    orchid mycorrhizas, seeds and protocorms.Mycoscience 37: 439-448.
    Zettler, L.W. & Hofer, C. J. (1998). Propagation of the little club-spur orchid (Platanthera
    clavellata) by symbiotic seed germination and its ecological implications.
    Zhang, H., et al. (2011). Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelezkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils. 47: 543-554.
    于龍順 et al., (1989). 天麻抗炎效應的研究. 中草藥 20(5): 19-21
    岑信釗 (2005). 天麻的化學成分與藥理作用研究進展.中國佛山市新爾藥業有限公司
    林雅姿 (2003). 中藥配醣體之體循環前代謝. 中國醫藥學院化學研究所. 碩士
    高南南, 于溜仁 & 徐錦堂 (1995). 天麻對老齡大鼠學習記憶的改善作用. 中國中
    藥雜誌 20: 562-564.
    許天銓 (1998). 台灣赤箭屬植物分類研究. 台灣大學生態學與演化生物學研究所學位論文, 台灣大學. 碩士.
    陳俊位 (2003). 有益微生物在克服蔬菜連作障礙之應用. 台中區農業專訊 40: 4-11.
    張毓倫 (2010). 南投赤箭型態觀察與培養及分離其共生菌. 清華大學分子與細胞生物研究所學位論文, 清華大學. 碩士.
    張驥 (1932). 雷公炮炙論. 藥物炮炙專書. 三卷.
    黃正良 (1985). 我國天麻的藥理研究及臨床應用現況. 中西醫結合雜誌 5: 251-254.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE