簡易檢索 / 詳目顯示

研究生: 許凱勛
Hsu, Kai-Hsun
論文名稱: 隨機取樣 SQP 演算法以解決非線性可靠度限制式之最佳化問題
A Filter-Based Sample Average SQP For Optimization Problems with Highly Nonlinear Probabilistic Constraints
指導教授: 詹魁元
Chan, Kuei-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 破壞機率梯度重要取點法可靠度最佳化二次循序演算法
外文關鍵詞: sequential quadratic programming, important sampling, gradient of function, reliability-based design optimization
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為解決非線性可靠度限制式之最佳化問題,提出一個以樣本法與 SQP 為骨架的演算法。此演算法使用平均重要取點法(AAIS)來估計破壞機率與其梯度。平均重要取點法為取樣在函數的極限狀態上,因此可使用較少的樣本數得到穩健且精確的破壞機率估計值。此外,平均重要取點法也可在有限的樣本數下,得到相對精確且變異量小的梯度量值。為防止破壞機率梯度的計算結果遭受機率值低但梯度值高的樣本影響,本研究提出一樣本過濾器,防止少數樣本導致梯度計算結果產生偏差。為確保演算法收斂,本演算法中使用一試驗準則(F-filter)來替代懲罰函數,用以判斷設計點可否被更新,並避免使用懲罰函數所造成的不良條件。
    為了提升演算法的效率,將部分已取樣之樣本回收再利用,做為下一次疊代的樣本,因此下一次疊代只需在上一次疊代過程中還未取樣的區域進行取樣即可。文中以一個工程範例以及兩個數學範例說明以本研究所提出演算法之計算結果並與文獻上的方法加以比較,其中一個數學範例為有多個最大可能破壞點,使用現行一階、二階可靠度方法與蒙地卡羅法皆無法有效的解決。本文提出的演算法除了可有效的解決多破壞模式問題,也可提昇處理一般可靠度最佳化問題的效率、穩健度,及收斂性。對於工程上存在的高度非線性可靠度限制式,本研究所提出的取樣 SQP 演算法較文獻上的方法有著更優異的演算性能。

    In this work we extend a filter-based sequential quadratic programming (SQP) algorithm to solve reliability-based design optimization (RBDO) problems with highly nonlinear constraints. This filter-based SQP uses the approach of average importance sampling (AAIS) in calculating the values and the gradients of probabilistic constraints. AAIS allocates samples at the limit state boundaries such that relatively few samples are required in calculating constraint probability values to achieve high accuracy and low variance. The accuracy of probabilistic constraint gradients using AAIS is improved by a sample filter to eliminate sample outliers that have low probability of occurrence and high gradient values. To ensure convergence, this algorithm replaces the penalty function by an iteration filter to avoid the ill-conditioning problems of the penalty parameters in the acceptance of a design update. A sample-reuse mechanism is introduced to improve the efficiency of the algorithm by avoiding redundant samples. `Unsampled' region, the region that is not covered by previous samples, is identified by the iteration step lengths, the trust region, and constraint reliability levels. As a result, this filter-based sampling SQP can efficiently handle highly nonlinear probabilistic constraints with multiple most probable points or functions without analytical forms. Several examples are demonstrated and compared with FORM/SORM and Monte Carlo simulation. Results show that by integrating the modified AAIS with the filter-based SQP, overall computation cost can be significantly improved in solving RBDO problems.

    書名頁 --------------------------------------------------------i 中文摘要------------------------------------------------------ii 英文摘要-----------------------------------------------------iii 誌謝----------------------------------------------------------iv 目錄-----------------------------------------------------------v 表目錄------------------------------------------------------viii 圖目錄--------------------------------------------------------ix 符號說明------------------------------------------------------xi 第一章、研究背景及動機-----------------------------------------1 1.1 研究背景---------------------------------------------------1 1.1.1 最佳化概述-----------------------------------------------2 1.1.2 可靠度概述 ----------------------------------------------4 1.1.3 可靠度最佳化設計-----------------------------------------4 1.2 研究動機與目的---------------------------------------------6 1.2.1 研究動機-------------------------------------------------6 1.2.2 研究目的-------------------------------------------------7 1.3本文架構----------------------------------------------------8 第二章、文獻探討-----------------------------------------------9 2.1 不確定因素模擬---------------------------------------------9 2.2 可靠度估計------------------------------------------------12 2.2.1 一階二次可靠度方法--------------------------------------13 2.2.2 進階一階二次可靠度方法----------------------------------15 2.2.3 二階可靠度方法------------------------------------------16 2.2.4 蒙地卡羅法----------------------------------------------17 2.2.5 減少變異的取點技法--------------------------------------19 2.2.6 重要取點法----------------------------------------------21 2.2.7 條件期望值----------------------------------------------23 2.2.8 可靠度方法比較------------------------------------------24 2.3 可靠度最佳化之方法與發展----------------------------------26 2.4 待解決的問題----------------------------------------------26 第三章、取樣 SQP 演算法---------------------------------------29 3.1 演算法大綱------------------------------------------------29 3.2 AAIS 取樣法-----------------------------------------------31 3.2.1 AAIS 取樣法之假設---------------------------------------31 3.2.2 破壞機率與破壞機率梯度估計的推導------------------------32 3.2.3 AAIS 取樣法之討論---------------------------------------36 3.2.4 延伸至非高斯隨機變數------------------------------------38 3.2.5 結合重要取點法------------------------------------------40 3.3 樣本過濾器------------------------------------------------41 3.4 樣本回收機器----------------------------------------------41 3.5 試驗機制--------------------------------------------------43 3.6 本章小結--------------------------------------------------47 第四章、懸臂樑工程範例----------------------------------------48 4.1 工程問題內容----------------------------------------------48 4.2 問題一----------------------------------------------------49 4.3 問題二----------------------------------------------------50 4.4 小結------------------------------------------------------50 第五章、針對工程模擬函數的探討--------------------------------52 5.1 工程模擬問題----------------------------------------------52 5.1.1 方法推導------------------------------------------------52 5.1.2 方法流程------------------------------------------------53 5.2 加入放寬參數----------------------------------------------55 5.3 加入放寬參數的討論----------------------------------------56 5.4 敏感度分析------------------------------------------------58 5.5 多個最大可能破壞點的問題----------------------------------60 5.6 可靠度最佳化數值問題--------------------------------------63 5.7 本章小結--------------------------------------------------65 第六章、結論與建議--------------------------------------------66 6.1 研究貢獻--------------------------------------------------66 6.2 未來研究方向----------------------------------------------67 參考文獻------------------------------------------------------68 附錄一:中英對照表---------------------------------------------73 自傳----------------------------------------------------------75

    [1] P. Y. Papalambros and D. F. Wilde, Principles of Optimal Design. Cambridge, 2000.
    [2] K. N. Otto and K. L. Wood, Product Design Techniques in Reverse Engineering and NewProduct Development. New Jersey: Prentice Hall, 2001.
    [3] M. Allen and K. Maute, “Reliability-based shape optimization of structures undergoingfluid-structure interaction phenomeena,” Computer Methods in Applied Mechanics andEngineering, vol. 194, pp. 3472–3495, 2005.
    [4] L. Gu, R.-J. Yang, C. Tho, M. Makowski, O. Faruque, and Y. Li, “Optimization androbustness for crashworthiness of side impact,” International Journal of Vehicle Design,vol. 26, no. 4, pp. 348–360, 2001.
    [5] A. Haldar and S. Mahadevan, Probability, Reliability and Statistical Methods in Engineer-ing Design. New York: John Wiley & Sons, 2000.
    [6] L. Huyse, S. Padula, R. Lewis, and W. Li, “Probabilistic approach to free-form airfoil shapeoptimization under uncertainty,” AIAA Journal, vol. 40, no. 9, pp. 1764–1772, 2002.
    [7] S. Yoshikazu, N. Hirotaka, and T. Tetsuzo, Theory of Multiobjective Optimization. Aca-demic Press, INC, 1996.
    [8] J. Royset and E. Polak, “Implementable algorithm for stochastic optimization using sampleaverage approximations,” Journal of Optimization theory and applications, vol. 233, no. 1,pp. 157–184, July 2004.
    [9] J. Royset and E. Polak, “Reliability-based optimal design using sample average approxi-mations,” Probabilistic Engineering Mechanics, vol. 19, no. 4, pp. 331–343, 2004.
    [10] C. Cornell, “Bounds on reliability of structural systems,” American Society of Civil En-gineers Proceedings, Journal of the Structural Division, vol. 93, no. ST1, pp. 171–200,1967.
    [11] R. Rackwitz, “Practical probability approach design,” Comite European du Beton, no. 112,1976.68
    [12] A. Hasofer and N. Lind, “Exact and invariant second-moment code format.,” Journal ofthe Engineering Mechanics Division, vol. 100, no. EM1, pp. 111–121, 1974.
    [13] M. Hohenbichler and R. Rackwitz, “Non-normal dependent vectors in structural safety,”ASCE Engineering Mechanics Division, vol. 107, no. 6, pp. 1227–1238, 1981.
    [14] X. Chen and N. Lind, “Fast probability integration by three-parameter normal tail aprox-imation.,” Structural Safety, vol. 1, pp. 269–276, 1983.
    [15] R. Rackwitz and B. Fidssler, “Structural reliability under combined random load se-quences.,” Computers and Structures, vol. 9, no. 5, pp. 484–494, 1978.
    [16] B. Fiessler, H.-J. Neumann, and R. Rackwitz, “Quadratic limit states in structural relia-bility,” ASCE Engineering Mechanics Division, vol. 105, no. 4, pp. 661–676, 1979.
    [17] K. Breitung, “Asymptotic approximations for multinormal integrals.,” Journal of Engi-neering Mechanics, vol. 110, no. 3, pp. 357–366, 1984.
    [18] M. Hohenbichler and R. Rackwitz, “Fiirst-order concepts in system reliability.,” StructuralSafety, vol. 1, no. 3, pp. 177–188, 1983.
    [19] O. Ditlevsen, “Generalized second moment reliability index,” Journal of Structural Me-chanics, vol. 7, no. 4, pp. 435–451, 1979.
    [20] L. Tvedt, “Distribution of quadratic forms in normal space-application to structural reli-ability.,” Journal of Engineering Mechanics, ASCE, no. 6, 1990.
    [21] J. Halton, “Retrospective and prospective survey of the monte carlo method,” SIAM Re-view, vol. 12, no. 1, pp. 1–63, 1970.
    [22] J. Turner, H. Wright, and R. Hamm, “A monte carlo primer for health physicists,” HealthPhysics, vol. 48, no. 6, pp. 717–733, 1985.
    [23] H. Rief, E. Gelbard, R. Schaefer, and K. Smith, “Review of monte carlo techniques foranalyzing reactor perturbations,” Nuclear Science and Engineering, vol. 92, no. 2, pp. 289–297, 1986.
    [24] B.-M. Ayyub and C.-Y. Chia, “Generalized conditional expectation for structural reliabil-ity assessment,” Structural Safety, vol. 11, pp. 131–146, 1992.69
    [25] L.-D. Jay, Probability and Statistics. Thomson, 6th ed., 2004.
    [26] A. Harbitz, “An efficient sampling method for probability of failure calculation,” StructuralSafety, vol. 3, no. 2, pp. 109–115, 1986.
    [27] A. Karamchandani, P. Bjerager, and A. Cornell, “Adaptive importance sampling.,” Pro-ceedings International Conference on Structural Safety and Reliability, San Francisco,pp. 855–862, 1989.
    [28] B.-M. Ayyub and A. Haldar, “Practical reliability techniques,” Journal of Structure En-gineering, vol. 110, pp. 1707–1784, 1984.
    [29] G.-J. White and B.-M. Ayyub, “Reliability methods for ship structures,” ASME NavalEngineering Journal, vol. 97, pp. 86–96, 1985.
    [30] R.-E. Melchers, Structural Reliability Analysis and Prediction. Chichester, UK: Ellis Hor-wood, 1987.
    [31] G. Fishman, Monte Carlo : concepts, algorithms, and applications. New York: Springer,1996.
    [32] E. Hofer, “Sensitivity analysis in the context of uncertainty analysis for computationallyintensive models,” Computer Physics Communications, vol. 117, no. 1-2, pp. 21–34, 1999.
    [33] A. Karamchandani, P. Bjerager, and C. Cornell, “Adaptive importance sampling,” in Pro-ceedings of the 5th International Conference on Structural Safety and Reliability, vol. PartII, pp. 855–862, Aug. 7-11 1989.
    [34] Y. Wu, “Adaptive importance sampling AIS-based system reliability sensitivity analysismethod,” in Proceedings of the IUTAM Symposium, Jun 7-10 1993, p. 550, 1993.
    [35] J. Tu, K. Choi, and Y. H. Park, “Design potential method for robust system parameterdesign,” AIAA Journal, vol. 121, no. 4, pp. 557–564, 2001.
    [36] J. Tu and K. Choi, “A new study on reliability-based design optimization,” ASME Journalof Mechanical Design, vol. 121, no. 4, pp. 557–564, 1999.70
    [37] X. Chen, T. K. Hasselman, and D. J. Neil, “Reliability based structural design optimizationfor practical applications,” In Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASEStructures, Structural Dynamics, and Materials Conference. Part 4 (of 4), vol. IMM-TR-2002-12, pp. 2724–2732, April 7-10 1997.
    [38] R. Yang, C. Chuang, L. Gu, and G. Li, “Numerical experiments of reliability-based opti-mization methods,” In proceeding of the 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference, vol. 7, pp. 5393–5405, 2004.
    [39] R. Fletcher, S. Leyffer, and P.-L. Toint, “On the global convergence of a filter-SQP algo-rithm,” Journal of Optimization, vol. 13, no. 1, pp. 44–59, 2002.
    [40] T. Coleman and Y. Li, “A reflective newton method for minimizing a quadratic func-tion subject to bounds on some of the variables,” Journal on Optimization ,SIAM, no. 4,pp. 1040–1058, 1996.
    [41] P. Gill, W. Murray, and M. Wright, Practical Optimization. London, UK: Academic Press,INC, 1981.
    [42] L. Jinghong, P. M. Zissimos, and N. Efstratios, “A single-loop approach for systemreliability-based design optimization,” Journal of Mechanical Design, no. 4, pp. 1215–1224,2007.
    [43] S. Rahman and D. Wei, “Design sensitivity and reliability-based structural optimizationby univariate decomposition,” Struct Multidisc Optim, pp. 245–261, 2008.
    [44] MATLAB optimization toolbox: User’s guide. Massachusetts: The MathWorks Inc., 2009.
    [45] K.-Y. Chan, S. Skerlos, and P. Papalambros, “An adaptive sequential linear program-ming algorithm for optimal design problems with probabilistic constraints,” Journal ofMechanical Design, vol. 129, no. 2, pp. 140–149, 2007.
    [46] X. Du and W. Chen, “Sequential optimization and reliability assessment method for ef-ficient probabilistic design,” Journal of Mechanical Design, vol. 126, no. 2, pp. 225–233,March 2004.71
    [47] B. Youn, K. Choi, and Y. Park, “Hybrid analysis method for reliability-based designoptimization,” Journal of Mechanical Design, Transactions of the ASME, vol. 125, no. 2,pp. 221–232, 2003.
    [48] M. Shooman, Probability Reliability: An Engineering Approach. New York: McGraw-Hill,1968.
    [49] B. Ayyub and A. Haldar, “Decision in construction operation,” Journal of the ConstructionEngineering and Management Division, ASCE, no. 4, pp. 343–357, 1985.

    下載圖示 校內:立即公開
    校外:2009-08-03公開
    QR CODE