| 研究生: |
高子軒 Kao, Tzu-Hsuan |
|---|---|
| 論文名稱: |
應用於下世代微電子連接點線之奈米金屬粒子相變態行為研究 Study on Phase Transformation of Metallic Nanoparticles for Next Generation Microelectronic Interconnections |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 金屬奈米粒子 、奈米尺度效應 、相變態 、合金化 |
| 外文關鍵詞: | metallic nanoparticle, nanosized effect, phase transformation, alloying |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當前微電子構裝發展重要趨勢之一,為應用奈米粒子低熔點特性,將其製備為奈米金屬墨水,經低溫熱處理即可獲得高性能之微導線與微接點。搭配高精準度噴墨技術,將可獲得所需圖案,無須使用繁複之微影製程。為傳輸電流與訊號,奈米金屬沈積物必須充份融合固化,並且須與元件接點產生緊密接合。本論文以Brust-Schiffrin兩相法所製備、以烷基硫醇為保護劑之金、銀以及銀-金合金(Ag3Au)奈米粒子為實驗材料,探討其於升溫過程中之相變現象,並系統性調查奈米粒子沈積物與常用電子金屬基材間之介面反應,期藉此開拓奈米尺寸誘發之液態金屬過冷與固化驅動力等相變態學理探討新領域。
本論文研究主題可以區分為三大部分。第一部份以奈米金粒子為實驗材料,探討奈米粒徑對金屬顆粒熔化行為效應。分別利用熱分析圖譜、微結構演變、電阻率變化以及表面電漿共振吸收行為等不同觀點驗證其奈米金屬粒子之相轉變溫度。同時藉由臨場觀察同步輻射X光繞射峰值隨溫度上升之變化,進一步證實金奈米粒子之低溫熔融與固化行為。
第二部分,探討奈米尺度效應對金奈米粒子沈積物與基材間合金化行為之影響。藉由SEM、SIMS、ESCA與拔膜測試等實驗方法,研究金奈米粒子和濺鍍金薄膜分別與不同基材介面反應組成物以及接合強度之差異,亦利用介面組成化學鍵結的位移證明此低溫合金化行為。
第三部分將系統性探討不同組成奈米金屬與合金粒子披覆物與電子金屬基材間之介面反應。將金、銀與金-銀合金奈米粒子,披覆於電子金屬基材,如銀、銅與鎳等,對金屬間互擴散與合金化行為進行系統性調查,實驗發現反應層組織相及厚度除取決於奈米金屬粒子中合金種類與比例,以及其與塊狀基材間金屬物理與化學性質差異,包括晶格匹配度、陰電性差異以及混和焓等影響。總而言之,本研究觀察奈米尺度誘發之低溫熔融以及後續發生之合金化與凝固現象,從冶金和熱力學的觀點,提出機制說明。
By utilizing the drastically reduced melting temperature of nano-sized particles (NPs), one of recent developments in microelectronic packaging is to manufacture highly conductive interconnections with metallic nanoparticle deposits subjected to a low temperature process. With the emerging technology of inkjet printing system, nano-size metallic NP suspensions can be applied to fabricate electrical line patterns without using conventional lithography. For the transportation of power and signal, the nanoparticle deposits should be consolidated and well jointed with the contacts of the devices. This study systematically investigated the low temperature melting, solidification and alloying of Au, Ag and Ag3Au nanoparticle deposits. The interaction between the metallic NPs and electronic substrates will be also explored. By doing so, the phase transformation issues such as the supercooling, latent heat difference, and driving force for solidification resulted from nanosized effects will be well understood.
This presenting thesis can be divided into three parts: First, the low temperature melting and subsequent solidification of Au nanoparticles was investigated. The temperature of phase transformation was examined by thermal analyses, microstructure evaluation, resistance measurement and surface plasma resonance shifts. Through monitoring the evolution of diffraction peaks as function of temperature using in situ synchrotron X-ray diffraction, the low temperature melting behavior of gold nanoparticles was further manifested.
Secondly, the alloying behavior between gold nanoparticle deposits and metallic substrates due to nano-sized effect was examined. The differences in interfacial products and adhesion strength between gold nanoparticles deposits and those of sputtered gold thin-film were studied by means of SIMS, ESCA and pull-off test. In addition, the chemical shifts of the reaction products proved the phenomenon of low temperature alloying.
In the third part, the interfacial reactions between nanoparticle deposits of different compositions (Au, Ag and Ag3Au) and metallic substrates of Ag, Cu and Ni were systematically investigated. It was examined that the phase and thickness of reaction layers were not only determined by the composition of the deposited nanopartilces but the differences of physical and chemical properties between the nanoparticles and substrate materials, including lattice mismatch, electronegativity difference and mixing enthalpy of the alloying systems involved. From the viewpoints of metallurgical and thermodynamic, the nano-sized induced successive behaviors of low temperature melting, alloying and solidification were demonstrated in this study.
[1] 張力德,牟季美,納米材料和納米結構,科學出版社,北京,2001。
[2] National Nanotechnology Initiative: Leading to the next Industrial revolution, Committee on technology national science and technology council, Feb. 2000, Washington, D. C., USA.
[3] WTEC panel report on Nanostructure Science and Technology, International Technology Research Institute, Dec. 1998, Maryland, USA.
[4] Y. Kanemitsu and Y. Fukunishi, Quantum confinement and Anderson localization of carriers in semiconductor nanoparticles: toward design of molecular electronics materials, Thin Solid Films, 393, 103 (2001).
[5] S. G. Penn, L. Hey, and M. J. Natanz, Nanoparticles for bioanalysis, Current Opinion in Chemical Biology, 7, 609 (2003).
[6] A. A. Lazarides, K. Lance Kelly, T. R. Jensen, and G. C. Schatz, Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors, J. of Mole. Struc.: Theochem., 529, 59 (2000).
[7] O. Lazarenkova and A. Balandin, Miniband formation in a quantum dot crystal, J. Appl. Phys., 89, 5509 (2001).
[8] A. Khitun, J. Liu, and K. L. Wang, On the modeling of lattice thermal conductivity in semiconductor quantum dot superlattices, Appl. Phys. Lett., 84, 1762 (2004).
[9] K. Y. Mulyuko, R. Z. Valiev, G. F. Korznikova, and V. V. Stolyarov, The amorphous Fe sub(83)Nd sub(13)B sub(4) alloy crystallization kinetics and high coercively state formation, Physica Status Solidi (A), 112(1), 137 (1989).
[10] J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G.. Alleyne, J. G. Georgegiadis, P. M. Ferreira and J. A. Rogers, High-resolution electrohydrodynamic jet printing, Nature Materials, 6, 782 (2007).
[11] B. Derby and N. Reis, Drop-on-demand printing of protein biochip arrays, MRS Bulletin, 28, 815 (2003).
[12] Y. Wu, Y. Li, B.S. Ong, P. Liu, S. Gardner and B. Chiang, High-Performance Organic Thin-Film Transistors with Solution-Printed Gold Contacts, Adv. Mater., 17, 2 (2005).
[13] C. J. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, and D. S. Ginley, Direct-Write Printing Of Silver Metallizations On Silicon Solar Cells, Mater. Res. Soc. Symp. Proc, v3.8.1 (2001).
[14] T. H. J. van Osch, J. Perelaer, A. W. M. de Laat and U. S. Schubert, Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates, Adv. Mater., 20, 343 (2008).
[15] S. H. Ko, H. Pan, C. P. Grigoropoulos1, C. K. Luscombe, J. M.J. Fr´echet and D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology, 18, 345202 (2007).
[16] P. Buffat and J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A., 13, 2287 (1976).
[17] K-s Moon, H. Dong, R. Maric, S.Pothukuchi A. Hunt, Y. Li and C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electro. Mater., 34, 168 (2005).
[18] Y. Li, K-s Moon and C. P.Wong, Electronics without Lead, Science, 308, 1419 (2005).
[19] H. Dong, K.S. Moon and C.P. Wong, Molecular Dynamics Study of Nanosilver Particles for Low-Temperature Lead-Free Interconnect Applications, J. Electro. Mater., 34, 40 (2005).
[20] H. Jiang, K. Moon, F. Hua and CP Wong, Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders, Chem. Mater., 19, 4482 (2007).
[21] B.L. Cushing, V.L. Kolesnichenko and C.J. O’Connor, Recent advances in the liquid-phase synthesis of inorganic nanoparticles, Chem. Rev.,104, 3893 (2004).
[22] R.M. Tromp and J.B. Hannon, Thermodynamics of nucleation and growth, Surf. Rev. Lett., 9, 1565 (2002).
[23] J. Park, V. Privman and E. Matijevic, Model of Formation of Monodispersed Colloids, J. Phys. Chem. B 105, 11630 (2001).
[24] T.P. Hoar and J.H. Schulman, Transparent Water-in-Oil Dispersions: the Oleopathic Hydro-Micelle, Nature, 152, 102 (1943).
[25] J. Tanori and M.P. Pileni, Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template, Langmuir, 13, 639 (1997).
[26] K.J. Ziegler, R.C. Doty, K.P. Johnston and B.A. Korgel, Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water J. Am. Chem. Soc., 123, 7797 (2001).
[27] P. Schuetz and F. Caruso, Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers, Chem. Mater., 16, 3066 (2004).
[28] Y. Lu, Y. Yin, Z.-Y. Li and Y. Xia, Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids, Nano Lett., 2, 785 (2002).
[29] J. Turkevich, P.C. Stevenson and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55 (1951).
[30] M. Giersig and P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir, 9, 3408 (1993).
[31] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whyman, Synthesis of Thiol Derivatised Gold Nanoparticles in a Two Phase Liquid/Liquid System. J. Chem. Soc., Chem. Commun. 801, 2 (1994).
[32] M.-C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev. ,104, 293 (2004).
[33] D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics J. Electrochem. Soc., 150, G412 (2003).
[34] N. R. Bieri, J. Chung , S. E. Hafel, D. Poulikakos and C. P. Grigoropoulos, Microstructuring by printing and laser curing of nanoparticle solutions Appl. Phys. Lett., 82, 3529 (2003).
[35] N. R. Bieri, J. Chung , S. E. Hafel, D. Poulikakos and C. P. Grigoropoulos, Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension Superlatt. Microstruct., 35, 437 (2004).
[36] P.E. Laibnis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh and R.G. Nuzzo, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold, J. Am. Chem. Soc., 113, 7152 (1991).
[37] M. Cai, J.L. Chen and J. Zhou, Reduction and morphology of silver nanoparticles via liquid- liquid method, J. Applied Surf. Sci., 226, 422 (2004).
[38] S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang and H. Gao, Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice, Langmuir, 17, 1571 (2001).
[39] B.A. Korgel, S. Fullam, S. Connolly and D. Fitzmaurice, Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered “Soft Spheres, J. Phys.Chem. B, 102, 8379 (1998).
[40] M.M. Oliveira, D. Ugarte, D. Zanchet and A.J.G. Zarbin, Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles J. Colloid Interface Sci., 292, 429 (2005).
[41] S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems, J. Microelectromech Syst., 11, 54 (2002).
[42] T. Y. Dong, W. T. Chen, C. W. Wang, C. P. Chen, C. N. Chen, M. C. Lin, J. M. Song, I. G. Chen and T.H. Kao, One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films, Phys. Chem. Chem. Phys. 11, 6269 (2009).
[43] B. D. Gates, Flexible Electronics, Science, 323, 1566 (2009).
[44] B. Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S-I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers and J.A. Lewis, Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes, Science, 323, 1590 (2009).
[45] I. Lisiecki and M. P. Pileni, Synthesis of copper metallic clusters using reverse micelles as microreactors, J. Am. Chem. Soc., 115, 3887 (1993).
[46] S.D. Bunge, T.J. Boyle and T.J. Headley, Synthesis of Coinage-Metal Nanoparticles from Mesityl Precursors, Nano Lett., 3, 901 (2003).
[47] S. Chen and J.M. Sommers, Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution, J. Phys. Chem. B, 105, 8816 (2001).
[48] M. Aslam, G. Gopakumar, T. L. Shoba, I. S. Mulla, K. Vijayamohanan, S. K. Kulkarni, J. Urban and W. Vogel, Formation of Cu and Cu2O Nanoparticles by Variation of the Surface Ligand: Preparation, Structure, and Insulating-to-Metallic Transition, J. Colloid Sci., 255, 79 (2002).
[49] T.P. Ang, T.S.A. Wee and W.S. Chin, Three-Dimensional Self-Assembled Monolayer (3D SAM) of n-Alkanethiols on Copper Nanoclusters, J. Phys. Chem. B, 108, 11001 (2004).
[50] S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia and J. Moon, Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing, Adv. Func. Mater., 18, 679 (2008).
[51] H. Jiang, K. S. Moon and C. P. Wong, Proc. Int. Symp. on Advanced Packaging Materials: Processes, Properties and Interfaces,173-7 (2005).
[52] M. Grouchko, A. Kamyshny and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem.19, 3057 (2009).
[53] K. Woo, D. Kim, J.S. Kim, S. Lim and J. Moon, Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate, Langmuir, 25, 429 (2009).
[54] W.B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon press; New York: 1967.
[55] R. Hultgren, P.D. Desai, D.T. Hawkins, G. Gleiser and K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloy, Metals Park; Ohio: 1973.
[56] V. Ozolins, C. Wolverton and A. Zunger, First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au, Phys. Rev. B, 57, 4332 (1998).
[57] L. Pauling, The Nature of the Chemical Bond, 3rd ed. Cornell University Press; New York: 1960.
[58] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park; OH: 1990.
[59] 顏正偉,熱輔助光還原金屬奈米線於二氧化鈦薄膜表面之研究,國立成功大學材料科學及工程學學系碩士論文,民國97年。
[60] B. E. Warren, X-ray Diffraction, Dover Publications, New York: 1969.
[61] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181,100,民國91年。
[62] D. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie Academic & Professional, London, UK: 1991.
[63] E. Hutter, J. H. Fendler, Exploitation of Localized Surface Plasmon Resonance, Adv. Mater. 16, 1685 (2004).
[64] 國家同步輻射研究中心,www.nsrrc.org.tw/english/lightsource.aspx
[65] A. C. Fisher-Cripps, Nanoindentation, 2nd edition, Springer-Verlag, New York: 2004.
[66] S. Chaturvedi, J.A. Rodriguez, J. Harbek, Reaction of S2 with ZnO and Cu/ZnO Surfaces: Photoemission and Molecular Orbital Studies, J. Phys. Chem. B, 101, 10860 (1997).
[67] L. Supriya and R.O. Claus, Colloidal Au/Linker Molecule Multilayer Films: Low-Temperature Thermal Coalescence and Resistance Changes, Chem. Mater., 17, 4325 (2005).
[68] J. Luo, M. M. Maye, L. Han, N. Kariuki, V. W. Jones, Y. Lin, M. H. Engelhard and C.J. Zhong, Spectroscopic Characterizations of Molecularly-Linked Gold Nanoparticle Assemblies Upon Thermal Treatment, Langmuir, 20, 4254 (2004).
[69] L. Rast, A. Stanishevsky, Aggregated nanoparticle structures prepared by thermal decomposition of poly(vinyl)-N-pyrrolidone /Ag nanoparticle composite films, Appl. Phys. Lett., 87, 223118 (2004).
[70] 吳恆璽,新型高效能奈米金屬懸浮液之開發、製備與性質探討,國立中山大學化學系碩士論文,民國95年。
[71] R.G. Wilson, F.A. Stevie and C.W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley, New York: 1989.
[72] W. Vandervorst, H.E. Maes and R.F. De Keersmaecker, Secondary ion mass spectrometry: Depth profiling of shallow As implants in silicon and silicon dioxide, J. Appl. Phys., 56, 1425 (1984).
[73] F. Ercolessi, W. Andreoni and E. Tosatti, Melting of small gold particles: Mechanism and size effects, Phys. Rev. Lett.66, 911 (1991).
[74] S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath and L.H. Allen, Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Phys. Rev. Lett. 77, 99 (1996).
[75] H. Jiang, K-s. Moon, H. Dong, F. Hua and C.P. Wong, Size-dependent melting properties of tin nanoparticles, Chem. Phys. Lett. 429, 492 (2006).
[76] J. Chastain(editors), Handbook of X-ray Photoelectron Spectroscopy, Perkin–Elmer Corp., Minnesota: 1992.
[77] C.C. Tyson, A. Bzowski, P. Kristof, M. Kuhn, R. Sammynaiken and T.K. Sham, Charge redistribution in Au-Ag alloys from a local perspective, Phys. Rev. B., 45, 8924 (1992).
[78] M. Kuhn and T.K. Sham, Charge redistribution and electronic behavior in a series of Au-Cu alloys, Phys. Rev. B., 3, 1647 (1994).
[79] J.C. Fuggle, F.U. Hillebrecht, P.A. Bennett and Z. Zołnierek, Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra, Phys. Rev. B., 27, 2179 (1982).
[80] P. Steiner and S. Hufner, Core level binding energy shifts in Ni on Au and Au on Ni overlayers, Solid State Commun., 37, 279 (1981).
[81] A.K. Santra, G.N. Subbanna and C.N.R. Rao, An investigation of bimetallic clusters by a combined use of electron microscopy and photoelectron spectroscopy: additive effects of alloying and cluster size on core-level binding energies, Surf. Sci., 317, 259 (1994).
[82] F. Hartung and G. Schmitz, Interdiffusion and reaction of metals: The influence and relaxation of mismatch-induced stress, Phys. Rev. B, 64, 245418 (2001).
[83] H. Reichert, A. Schöps, I.B. Ramsteiner, V.N. Bugaev, O. Shchyglo, A. Udyansky, H. Dosch, M. Asta, R. Drautz and V. Honkimäki, Competition between Order and Phase Separation in Au-Ni, Phys. Rev. Lett., 95, 235703 (2005).
[84] Y. Vasquez, Z. Luo and R.E. Schaak, Low-Temperature Solution Synthesis of the Non-Equilibrium Ordered Intermetallic Compounds Au3Fe, Au3Co, and Au3Ni as Nanocrystals, J. Am. Chem. Soc., 130, 11866 (2008).
[85] E. Robert, R. Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent, Boston: 1992.
[86] T. Surholt, C. Minkwitz and Chr. Herzig, Nickel and selenium grain boundary solute and diffusion and segregation in silver, Acta Mater., 46, 1849 (1998).
[87] A. Prince, D.S. Evans and G.V. Raynor, Phase Diagrams of Ternary Gold Alloy, 1st ed. Institute of Metals, Brookfield; VT: 1990.
[88] A. Prince, Critical assessment of copper-gold-silver ternary system, Int. Mater. Rev., 33, 314 (1988).
[89] T. Surholt, C. Minkwitz and Chr. Herzig, Ag grain boundary diffusion and segregation in Cu: Measurements in the types b and c diffusion regimes, Acta Mater., 49, 249 (2001).
[90] A.M. James and M.P. Lord, Macmillan's Chemical and Physical Data. Macmillan; London: 1992.
校內:2015-08-02公開