簡易檢索 / 詳目顯示

研究生: 高子軒
Kao, Tzu-Hsuan
論文名稱: 應用於下世代微電子連接點線之奈米金屬粒子相變態行為研究
Study on Phase Transformation of Metallic Nanoparticles for Next Generation Microelectronic Interconnections
指導教授: 陳引幹
Chen, In-Gann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 142
中文關鍵詞: 金屬奈米粒子奈米尺度效應相變態合金化
外文關鍵詞: metallic nanoparticle, nanosized effect, phase transformation, alloying
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當前微電子構裝發展重要趨勢之一,為應用奈米粒子低熔點特性,將其製備為奈米金屬墨水,經低溫熱處理即可獲得高性能之微導線與微接點。搭配高精準度噴墨技術,將可獲得所需圖案,無須使用繁複之微影製程。為傳輸電流與訊號,奈米金屬沈積物必須充份融合固化,並且須與元件接點產生緊密接合。本論文以Brust-Schiffrin兩相法所製備、以烷基硫醇為保護劑之金、銀以及銀-金合金(Ag3Au)奈米粒子為實驗材料,探討其於升溫過程中之相變現象,並系統性調查奈米粒子沈積物與常用電子金屬基材間之介面反應,期藉此開拓奈米尺寸誘發之液態金屬過冷與固化驅動力等相變態學理探討新領域。
    本論文研究主題可以區分為三大部分。第一部份以奈米金粒子為實驗材料,探討奈米粒徑對金屬顆粒熔化行為效應。分別利用熱分析圖譜、微結構演變、電阻率變化以及表面電漿共振吸收行為等不同觀點驗證其奈米金屬粒子之相轉變溫度。同時藉由臨場觀察同步輻射X光繞射峰值隨溫度上升之變化,進一步證實金奈米粒子之低溫熔融與固化行為。
    第二部分,探討奈米尺度效應對金奈米粒子沈積物與基材間合金化行為之影響。藉由SEM、SIMS、ESCA與拔膜測試等實驗方法,研究金奈米粒子和濺鍍金薄膜分別與不同基材介面反應組成物以及接合強度之差異,亦利用介面組成化學鍵結的位移證明此低溫合金化行為。
    第三部分將系統性探討不同組成奈米金屬與合金粒子披覆物與電子金屬基材間之介面反應。將金、銀與金-銀合金奈米粒子,披覆於電子金屬基材,如銀、銅與鎳等,對金屬間互擴散與合金化行為進行系統性調查,實驗發現反應層組織相及厚度除取決於奈米金屬粒子中合金種類與比例,以及其與塊狀基材間金屬物理與化學性質差異,包括晶格匹配度、陰電性差異以及混和焓等影響。總而言之,本研究觀察奈米尺度誘發之低溫熔融以及後續發生之合金化與凝固現象,從冶金和熱力學的觀點,提出機制說明。

    By utilizing the drastically reduced melting temperature of nano-sized particles (NPs), one of recent developments in microelectronic packaging is to manufacture highly conductive interconnections with metallic nanoparticle deposits subjected to a low temperature process. With the emerging technology of inkjet printing system, nano-size metallic NP suspensions can be applied to fabricate electrical line patterns without using conventional lithography. For the transportation of power and signal, the nanoparticle deposits should be consolidated and well jointed with the contacts of the devices. This study systematically investigated the low temperature melting, solidification and alloying of Au, Ag and Ag3Au nanoparticle deposits. The interaction between the metallic NPs and electronic substrates will be also explored. By doing so, the phase transformation issues such as the supercooling, latent heat difference, and driving force for solidification resulted from nanosized effects will be well understood.
    This presenting thesis can be divided into three parts: First, the low temperature melting and subsequent solidification of Au nanoparticles was investigated. The temperature of phase transformation was examined by thermal analyses, microstructure evaluation, resistance measurement and surface plasma resonance shifts. Through monitoring the evolution of diffraction peaks as function of temperature using in situ synchrotron X-ray diffraction, the low temperature melting behavior of gold nanoparticles was further manifested.
    Secondly, the alloying behavior between gold nanoparticle deposits and metallic substrates due to nano-sized effect was examined. The differences in interfacial products and adhesion strength between gold nanoparticles deposits and those of sputtered gold thin-film were studied by means of SIMS, ESCA and pull-off test. In addition, the chemical shifts of the reaction products proved the phenomenon of low temperature alloying.
    In the third part, the interfacial reactions between nanoparticle deposits of different compositions (Au, Ag and Ag3Au) and metallic substrates of Ag, Cu and Ni were systematically investigated. It was examined that the phase and thickness of reaction layers were not only determined by the composition of the deposited nanopartilces but the differences of physical and chemical properties between the nanoparticles and substrate materials, including lattice mismatch, electronegativity difference and mixing enthalpy of the alloying systems involved. From the viewpoints of metallurgical and thermodynamic, the nano-sized induced successive behaviors of low temperature melting, alloying and solidification were demonstrated in this study.

    摘要...................................I Abstract..............................III 致謝...................................V 目錄...................................VII 表目錄.................................XII 圖目錄.................................XIII 第一章 緒論 1 1-1奈米結構簡介 1 1-2奈米粒子的特性與應用 2 1-3噴墨製程現況 4 1-4研究動機與目的 5 第二章 理論基礎與文獻回顧 11 2-1 常見的奈米金屬粒子製備方式 11 2-1-1 共沈澱合成法 11 2-1-2 溶膠合成法 13 2-1-3 微乳化合成法 14 2-1-4 模板合成法 15 2-2金屬奈米粒子的發展歷史與其應用於微電子導線之現況 17 2-2-1金奈米粒子 17 2-2-2銀奈米粒子 18 2-2-3銅奈米粒子 20 2-2-4 銅基合金與複合奈米粒子 22 2-3金屬間物理與化學性質 23 第三章 實驗流程與儀器設備 48 3-1藥品名稱 48 3-2實驗流程 50 3-2-1反應前驅物與奈米金屬粉末的合成 50 3-2-1-1合成四氯氫金 50 3-2-1-2合成以正辛基硫醇作為保護劑之金奈米粒子 51 3-2-1-3合成以正辛基硫醇作為保護劑之金-銀合金奈米粒子 52 3-2-1-4合成以正辛基硫醇作為保護劑之銀奈米粒子 53 3-2-2奈米金屬粒子旋轉批覆前基板清洗步驟與披覆參數 53 3-2-2-1矽基板 53 3-2-2-2純金屬以及金屬鍍膜基板 54 3-2-2-3旋轉披覆參數 54 3-3量測與分析設備 55 3-3-1解析型掃描穿透式電子顯微鏡 55 3-3-2掃描式電子顯微鏡 56 3-3-3原子力探針顯微鏡 56 3-3-4低掠角X光繞射儀 56 3-3-5紫外/可見吸收光譜儀 58 3-3-6臨場同步輻射X光繞射儀 58 3-3-7化學分析電子能譜儀 59 3-3-8歐傑電子能譜儀 60 3-3-9表面粗度儀 61 3-3-10熱重分析儀 62 3-3-11四點探針 62 3-3-12拔膜測試 63 3-3-13奈米壓痕測試 63 第四章 實驗結果與討論 71 4-1奈米金屬粒子性質鑑定 71 4-1-1穿透式電子顯微鏡 71 4-1-2表面電漿共振吸收 71 4-2奈米金屬粒子低溫熔融行為 73 4-2-1熱性質分析 73 4-2-1-1 金奈米粒子 73 4-2-1-2 銀奈米粒子 73 4-2-1-3 銀-金合金(Ag3Au)奈米粒子 74 4-2-2後熱處理對微結構與形貌之影響 75 4-2-3後熱處理對表面電漿共振吸收以及電阻率變化之影響 75 4-2-4臨場同步輻射X光繞射 77 4-3 奈米尺度效應對金奈米粒子沈積物與基材合金化之影響 79 4-3-1奈米尺度效應對表面型態之影響 79 4-3-2奈米尺寸效應對介面擴散反應之影響 80 4-3-2-1介面原子互擴散 80 4-3-2-2 奈米尺度效應對介面接合強度之影響 82 4-3-3介面組成與化學鍵結之關係 82 4-4不同組成奈米金屬粒子與基材介面相變態行為 85 4-4-1表面形貌及與介面接合情形觀察 85 4-4-2奈米金屬粒子沈積物與銀基材 86 4-4-3奈米金屬粒子沈積物與鎳基材 86 4-4-4奈米金屬粒子沈積物與銅基材 89 4-4-5介面反應物機械性質 90 4-5奈米尺度誘發低溫合金化行為 93 第五章 結論 127 參考文獻 …………………………………………………...130 作者自述 …………………………………………………141 表目錄 Table 2-1 Recent progress of metallic nanoparticles ink. 25 Table 2-2 Properties of the noble alloy systems involved. 26 Table 4-1 The thermal signals derived from DSC and TGA of different metallic NPs. 94 Table 4-2 The resistivity of NPDs film before and after different heat treatment conditions. (unit: μΩ cm) 94 Table 4-3 Average roughness (Ra) of the samples cured at various temperatures for 60 minute (unit: nm). 94 Table 4-4 Thickness of each interfacial reaction layers and ratios of atomic concentration obtained from SIMS and XPS depth profiling, respectively. 95 Table 4-5 List of referenced XPS core level binding energies and their sensitivity factors 95 Table 4-6 Electron binding energy (ΔEb) of each corresponding core level spectra measured on the surface after sputter etching 96 Table 4-7 Metallurgical features occurred in different NPD/substrate systems. 97 圖目錄 Figure 1-1 (a) The melting point of Au nanoparticles with increasing diameters and (b) Schematic diagrams of metallic nanoparticles with lower melting/sintering temperature to form conductive network with frequent surface contacts in comparison with micro-sized metallic particles (left) with less contact areas. 8 Figure 1-2 Schematic diagram of using metallic nanoparticles a interconnecting materials. 9 Figure 1-3 Simulation results of Au nanoparticles reacting with Ag substrates under 400K as function of time. 9 Figure 1-4 (Left) Relationship between the radius of the as-synthesized SnAg alloy nanoparticles and their corresponding melting points and heat of fusion, respectively. (Right) SEM image of the cross-section of the wetted SnAg alloy nanoparticles on the cleaned copper foil. 10 Figure 2-1 The structure of reverse micelle proposed by Schulman et al in 1943. 27 Figure 2-2 The chemical structure of CTAB. 27 Figure 2-3 Schematics of microemulsion synthetic method for fabricating metallic nanoparticles. 28 Figure 2-4 The evolution of the morphology of nanoparticles with increasing proportion of water phase in the system under constant concentration of Cu(AOT)2 proposed by Pileni and Tanori in 1997. 29 Figure 2-5 Schematic diagrams of supercritical fluids replacing water-oil microemulsion synthetic method. 30 Figure 2-6 Schematics of fabricating copper nanoparticles using supercritical fluids by Korgel et al. 30 Figure 2-7 The TEM images of copper oxide nanoparticles using supercritical fluids with surfactant: (a) high resolution and low resolution of (b) and (c). 31 Figure 2-8The TEM images of thiol protected copper nanoparticles using supercritical fluids: (a) high resolution and (b) low resolution . 32 Figure 2-9 The gold nanoparticles fabricated via the templates of PAH/PAA multilayer 33 Figure 2-10 Arrangement of core-shell Au@SiO2 structure using photo-resist template 34 Figure 2-11 Schematic diagram of Brust-Schiffrin method fabricating gold nanoparticles. 35 Figure 2-12 Schematic diagram do fabricating functionalized gold nanoparticles using different surfactants. 35 Figure 2-13 (a) Atomic force micrograph of an inkjetted line. (b) Optical micrographs of an inkjetted inductor formed on commercial polyester-based general purpose transparency plastic. 36 Figure 2-14 (a) Light microscopy images of a cured line by laser, (b) AFM scanned image of (a), and (c) its cross section. 36 Figure 2-15 TEM images of dodecanethiol-protected silver nanoparticles : (left) low magnification (right) high resolution 2-D arrangement. 37 Figure 2-16 (Left) Diagram of the piezo drop-on-demand ink-jet printing system. (Right) Optical micrograph of an ink-jet printed resonant inductive coil . 37 Figure 2-17 TEM micrographs of decanoate-protected silver nanoparticles. (a) Ensemble of silver nanoparticles with a histogram showing the respective size distribution. Selected area electron diffraction pattern is shown in the inset. (b) The top view and (c) cross section SEM morphology of the cured silver film on Si wafer. 38 Figure 2-18 (a) Schematic diagram illustrating omnidirectional printing and optical image of apparatus used (inset). (b) Transmission electron microscopy image of the synthesized silver nanoparticles and optical image of the concentrated ink (inset). (c) Shear elastic modules as a function of shear stress for silver nanoparticle inks of varying solids loading. 39 Figure 2-19 The TEM image of dodecanethiol-protected Cu nanoparticles using standard Brust-Schiffrin two phase method by Aslam et al . 40 Figure 2-20 The TEM image of hexanethiol-protected Cu nanoparticles using modified Brust-Schiffrin two phase method with organic phase of THF by Chen and Sommers et al. 41 Figure 2-21 The TEM image of octanethiol-protected Cu nanoparticles using modified Brust-Schiffrin two phase method by Chin et al . 41 Figure 2-22 (a) Resistivity of the Cu conductive film as a function of heat treatment temperature. The ink-jet printed Cu nanoparticulate films were heat-treated at various temperatures between 200oC and 325oC under vacuum (10-3 Torr). (b) SEM image showing the microstructure of the Cu film heat-treated at 325oC. The insets show high-magnification SEM images of the as-synthesized Cu nanoparticles prior to sintering. All scale bars=500 nm. 42 Figure 2-23 High resolution TEM picture of Ag/Cu alloy nanoparticles. 43 Figure 2-24 (a) HR-SEM images of the printed patterns heated under N2 at various temperatures. (b) Schematic illustration of the growing silver crystallites forming the shell. (c) The resistivity calculated for printed patterns (on glass) heated under N2 as a function of temperature. 43 Figure 2-25 (a) The comparison between the calculated packing density based on the Furnas model and the experimentally measured annealed density for the films prepared with various mixing ratios of Cu/Ag. (b) The resistivity variation as a function of annealing temperature for the mixed metal films with various Cu/Ag mixing ratios. The inset shows the resistivity of the Cu/Ag) 3:1 film prepared with larger silver nanoparticles (50 nm). (c) SEM images showing the microstructure of pure Cu (the upper) and Cu/Ag) 3:1 mixed film (the lower) annealed at 175, 250, and 325oC for 90 min. Arrows indicate the presence of Ag particles between Cu particles. All scale bars=100 nm. 44 Figure 2-26 Phase diagram of Au-Ag alloy system. 45 Figure 2-27 Phase diagram of Au-Cu alloy system. 45 Figure 2-28 Phase diagram of Ag-Cu alloy system. 46 Figure 2-29 Phase diagram of Au-Ni alloy system. 46 Figure 2-30 Phase diagram of Ag-Ni alloy system. 47 Figure 3-1 Synthesis steps of different compositions metallic nanoparticles of different compositions. 65 Figure 3-2 Experimental flow chart. 66 Figure 3-3 The diagram of measuring the average roughness at distance L . 66 Figure 3-4 The diagram displaying the relationship between lattice diffraction and Bragg Law. 67 Figure 3-5 The diagram of Grazing Incident X-ray diffraction 67 Figure 3-6 The diagram showing the excitation of surface plasmons by light is denoted as a surface plasmon resonance (SPR) for nanometer-sized metallic structures. 68 Figure 3-7 The wavelength of synchrotron radiation ranges. 69 Figure 3-8 Schematic diagrams of nanoindentation: (a) the progress of loading and unloading and (b) load-displacement curve. 70 Figure 4-1 (a) TEM image and (b) the size distribution of the Au nanoparticles used in this study. 98 Figure 4-2 (a) TEM image and (b) the size distribution of the Ag nanoparticles used in this study. 98 Figure 4-3 (a) TEM image and (b) the size distribution of the Ag3Au NPs used in this study. 98 Figure 4-4 UV-visible absorption spectra of octanthiol protected nanoparticles in chloroform with nominal formulas of Ag, Ag3Au and Au, respectively. 99 Figure 4-5 (a) TGA and (b) DSC thermal curve of the Au NPs used in this study. 100 Figure 4-6 (a) TGA and (b) DSC thermal curve of the Ag NPs used in this study. 101 Figure 4-7 (a) TGA and (b) DSC thermal curve of the Ag3Au NPs used in this study. 102 Figure 4-8 SEM morphology of spin-coated film after drying: (a) Au, (b) Ag3Au and (c)Ag nanoparticles. 103 Figure 4-9 SEM morphology of Au, Ag and Ag3Au NPs subjected to different curing temperatures for 20 minutes. The insert scale bar=200nm. 104 Figure 4-10 (a) UV-visible absorption spectra and (b) surface plasma resonance shifts with respect to sheet resistance of spin-coated Au NPs films on Si wafer as function of different curing temperatures. 105 Figure 4-11 (a) UV-visible absorption spectra and (b) surface plasma resonance shifts with respect to sheet resistance of spin-coated Ag NPs films on Si wafer as function of different curing temperatures. 106 Figure 4-12 (a) UV-visible absorption spectra and (b) surface plasma resonance shifts with respect to sheet resistance of spin-coated Ag3Au NPs films on Si wafer as function of different curing temperatures. 107 Figure 4-13 The change of Au (111) diffraction peak with respect to heating temperature. 108 Figure 4-14 TGA and DSC curves of the Au NPs and the integrated intensity of the Au (111) diffraction peak with increasing temperature. 108 Figure 4-15 AFM topography pictures of the Au deposit on the Ag substrate cured at various temperatures for 60 min: (a) 200oC, (b) 250oC and (c) 300oC. 109 Figure 4-16 AFM topography pictures of the Au deposit on the Cu substrate cured at various temperatures for 60 min: (a) 2000C, (b) 2500C and (c) 3000C. 110 Figure 4-17 AFM topography pictures of the Au deposit on the Ni substrate cured at various temperatures for 60 min: (a) 2000C, (b) 2500C and (c) 3000C. 111 Figure 4-18 Comparison of the SIMS depth profiles between the Au NP deposits and sputtered films of each system: (a) Au–Ag, (b) Au–Cu and (c) Au–Ni. (NPD: nanoparticle deposit, SF: sputtered film.) 112 Figure 4-19 Adhesion strength of the Au deposits on Cu, Ag and Ni substrates under different curing conditions in comparison with sputtered films with or without heat treatment at 300oC for 60 min. (NPD: nanoparticle deposit, SF: sputtered film.) 113 Figure 4-20 Atomic concentrations at the interface between the Au NP deposit and substrates via XPS depth profiling as a function of sputtering time and depth after different isothermal time: (a) Au–Ag, (b) Au–Cu and (c) Au–Ni. 114 Figure 4-21 Photoemission spectra of (a) Au 4f and (b) Ag 3d levels obtained from the surface after sputter-etching for 400s at the interface between the Au deposits and Ag substrates. 115 Figure 4-22 Photoemission spectra of (a) Au 4f and (b) Cu 2p levels obtained from the surface after sputter-etching for 400s at the interface between the Au deposits and Cu substrates. 116 Figure 4-23 Photoemission spectra of (a) Au 4f and (b) Ni 2p levels obtained from the surface after sputter-etching for 400s at the interface between the Au deposits and Ni substrates. 117 Figure 4-24 X-ray diffraction patterns of Au NPs deposits on Cu substrate under different curing conditions. (NPD: nanoparticle deposit.) 118 Figure 4-25 Surface and cross-sectional morphologies of the cured Au NPD on different substrates: ((a), (d)) Ag substrate; ((b), (e)) Cu substrate and ((c), (f)) Ni substrate. The curing was performed at 300oC for 60 min. 119 Figure 4-26 Surface and cross-sectional morphologies of the cured Ag3Au NPD on different substrates: ((a), (d)) Ag substrate; ((b), (e)) Cu substrate and ((c), (f)) Ni substrate. The curing was performed at 300oC for 60 min. 120 Figure 4-27 Surface and cross-sectional morphologies of the cured Ag NPD on different substrates: ((a), (c)) Cu substrate and ((b), (d)) Ni substrate. The curing was performed at 300oC for 60 min. 121 Figure 4-28 Atomic concentrations via AES depth profiling from the surface of the reacted Au and Ag3Au NPDs into (a) Ag, (b) Ni and (c) Cu substrates. (d) Atomic concentrations from the surface of the reacted Ag NPDs into the Cu and Ni substrates. All the data were examined after being cured at 300oC for 60 min. (NPD: nanoparticle deposit) 122 Figure 4-29 In situ XRD spectra showing Au (111) and Au3Ni (111) peaks as function of heating temperature. 123 Figure 4-30 X-ray diffraction patterns of the NPDs on Cu substrates. All the data were examined after being cured at 300oC for 60 min. (NPD: nanoparticle deposit) 123 Figure 4-31 Schematic of the calculation of the interdiffusion coefficient by the Matano method. 124 Figure 4-32 Schematic diagram of the chemical potential gradient in the apparent width of two-phase region [88]. 124 Figure 4-33 Adhesion strength of NPDs on different substrates after curing under 300oC for 60minutes. 125 Figure 4-34 Hardness and Young's modulus of the reaction layers of Au, Ag and Ag3Au NPDs reacted with different substrates. 125 Figure 4-35 Schematic illustrations of the alloying behavior between the NPD and the bulk substrate at elevated temperatures. 126

    [1] 張力德,牟季美,納米材料和納米結構,科學出版社,北京,2001。
    [2] National Nanotechnology Initiative: Leading to the next Industrial revolution, Committee on technology national science and technology council, Feb. 2000, Washington, D. C., USA.
    [3] WTEC panel report on Nanostructure Science and Technology, International Technology Research Institute, Dec. 1998, Maryland, USA.
    [4] Y. Kanemitsu and Y. Fukunishi, Quantum confinement and Anderson localization of carriers in semiconductor nanoparticles: toward design of molecular electronics materials, Thin Solid Films, 393, 103 (2001).
    [5] S. G. Penn, L. Hey, and M. J. Natanz, Nanoparticles for bioanalysis, Current Opinion in Chemical Biology, 7, 609 (2003).
    [6] A. A. Lazarides, K. Lance Kelly, T. R. Jensen, and G. C. Schatz, Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors, J. of Mole. Struc.: Theochem., 529, 59 (2000).
    [7] O. Lazarenkova and A. Balandin, Miniband formation in a quantum dot crystal, J. Appl. Phys., 89, 5509 (2001).
    [8] A. Khitun, J. Liu, and K. L. Wang, On the modeling of lattice thermal conductivity in semiconductor quantum dot superlattices, Appl. Phys. Lett., 84, 1762 (2004).
    [9] K. Y. Mulyuko, R. Z. Valiev, G. F. Korznikova, and V. V. Stolyarov, The amorphous Fe sub(83)Nd sub(13)B sub(4) alloy crystallization kinetics and high coercively state formation, Physica Status Solidi (A), 112(1), 137 (1989).
    [10] J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G.. Alleyne, J. G. Georgegiadis, P. M. Ferreira and J. A. Rogers, High-resolution electrohydrodynamic jet printing, Nature Materials, 6, 782 (2007).
    [11] B. Derby and N. Reis, Drop-on-demand printing of protein biochip arrays, MRS Bulletin, 28, 815 (2003).
    [12] Y. Wu, Y. Li, B.S. Ong, P. Liu, S. Gardner and B. Chiang, High-Performance Organic Thin-Film Transistors with Solution-Printed Gold Contacts, Adv. Mater., 17, 2 (2005).
    [13] C. J. Curtis, T. Rivkin, A. Miedaner, J. Alleman, J. Perkins, L. Smith, and D. S. Ginley, Direct-Write Printing Of Silver Metallizations On Silicon Solar Cells, Mater. Res. Soc. Symp. Proc, v3.8.1 (2001).
    [14] T. H. J. van Osch, J. Perelaer, A. W. M. de Laat and U. S. Schubert, Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates, Adv. Mater., 20, 343 (2008).
    [15] S. H. Ko, H. Pan, C. P. Grigoropoulos1, C. K. Luscombe, J. M.J. Fr´echet and D. Poulikakos, All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles, Nanotechnology, 18, 345202 (2007).
    [16] P. Buffat and J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A., 13, 2287 (1976).
    [17] K-s Moon, H. Dong, R. Maric, S.Pothukuchi A. Hunt, Y. Li and C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electro. Mater., 34, 168 (2005).
    [18] Y. Li, K-s Moon and C. P.Wong, Electronics without Lead, Science, 308, 1419 (2005).
    [19] H. Dong, K.S. Moon and C.P. Wong, Molecular Dynamics Study of Nanosilver Particles for Low-Temperature Lead-Free Interconnect Applications, J. Electro. Mater., 34, 40 (2005).
    [20] H. Jiang, K. Moon, F. Hua and CP Wong, Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders, Chem. Mater., 19, 4482 (2007).
    [21] B.L. Cushing, V.L. Kolesnichenko and C.J. O’Connor, Recent advances in the liquid-phase synthesis of inorganic nanoparticles, Chem. Rev.,104, 3893 (2004).
    [22] R.M. Tromp and J.B. Hannon, Thermodynamics of nucleation and growth, Surf. Rev. Lett., 9, 1565 (2002).
    [23] J. Park, V. Privman and E. Matijevic, Model of Formation of Monodispersed Colloids, J. Phys. Chem. B 105, 11630 (2001).
    [24] T.P. Hoar and J.H. Schulman, Transparent Water-in-Oil Dispersions: the Oleopathic Hydro-Micelle, Nature, 152, 102 (1943).
    [25] J. Tanori and M.P. Pileni, Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template, Langmuir, 13, 639 (1997).
    [26] K.J. Ziegler, R.C. Doty, K.P. Johnston and B.A. Korgel, Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water J. Am. Chem. Soc., 123, 7797 (2001).
    [27] P. Schuetz and F. Caruso, Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers, Chem. Mater., 16, 3066 (2004).
    [28] Y. Lu, Y. Yin, Z.-Y. Li and Y. Xia, Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids, Nano Lett., 2, 785 (2002).
    [29] J. Turkevich, P.C. Stevenson and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55 (1951).
    [30] M. Giersig and P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir, 9, 3408 (1993).
    [31] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whyman, Synthesis of Thiol Derivatised Gold Nanoparticles in a Two Phase Liquid/Liquid System. J. Chem. Soc., Chem. Commun. 801, 2 (1994).
    [32] M.-C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev. ,104, 293 (2004).
    [33] D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics J. Electrochem. Soc., 150, G412 (2003).
    [34] N. R. Bieri, J. Chung , S. E. Hafel, D. Poulikakos and C. P. Grigoropoulos, Microstructuring by printing and laser curing of nanoparticle solutions Appl. Phys. Lett., 82, 3529 (2003).
    [35] N. R. Bieri, J. Chung , S. E. Hafel, D. Poulikakos and C. P. Grigoropoulos, Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension Superlatt. Microstruct., 35, 437 (2004).
    [36] P.E. Laibnis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh and R.G. Nuzzo, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold, J. Am. Chem. Soc., 113, 7152 (1991).
    [37] M. Cai, J.L. Chen and J. Zhou, Reduction and morphology of silver nanoparticles via liquid- liquid method, J. Applied Surf. Sci., 226, 422 (2004).
    [38] S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang and H. Gao, Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice, Langmuir, 17, 1571 (2001).
    [39] B.A. Korgel, S. Fullam, S. Connolly and D. Fitzmaurice, Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered “Soft Spheres, J. Phys.Chem. B, 102, 8379 (1998).
    [40] M.M. Oliveira, D. Ugarte, D. Zanchet and A.J.G. Zarbin, Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles J. Colloid Interface Sci., 292, 429 (2005).
    [41] S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson, Ink-jet printed nanoparticle microelectromechanical systems, J. Microelectromech Syst., 11, 54 (2002).
    [42] T. Y. Dong, W. T. Chen, C. W. Wang, C. P. Chen, C. N. Chen, M. C. Lin, J. M. Song, I. G. Chen and T.H. Kao, One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films, Phys. Chem. Chem. Phys. 11, 6269 (2009).
    [43] B. D. Gates, Flexible Electronics, Science, 323, 1566 (2009).
    [44] B. Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S-I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers and J.A. Lewis, Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes, Science, 323, 1590 (2009).
    [45] I. Lisiecki and M. P. Pileni, Synthesis of copper metallic clusters using reverse micelles as microreactors, J. Am. Chem. Soc., 115, 3887 (1993).
    [46] S.D. Bunge, T.J. Boyle and T.J. Headley, Synthesis of Coinage-Metal Nanoparticles from Mesityl Precursors, Nano Lett., 3, 901 (2003).
    [47] S. Chen and J.M. Sommers, Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution, J. Phys. Chem. B, 105, 8816 (2001).
    [48] M. Aslam, G. Gopakumar, T. L. Shoba, I. S. Mulla, K. Vijayamohanan, S. K. Kulkarni, J. Urban and W. Vogel, Formation of Cu and Cu2O Nanoparticles by Variation of the Surface Ligand: Preparation, Structure, and Insulating-to-Metallic Transition, J. Colloid Sci., 255, 79 (2002).
    [49] T.P. Ang, T.S.A. Wee and W.S. Chin, Three-Dimensional Self-Assembled Monolayer (3D SAM) of n-Alkanethiols on Copper Nanoclusters, J. Phys. Chem. B, 108, 11001 (2004).
    [50] S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia and J. Moon, Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing, Adv. Func. Mater., 18, 679 (2008).
    [51] H. Jiang, K. S. Moon and C. P. Wong, Proc. Int. Symp. on Advanced Packaging Materials: Processes, Properties and Interfaces,173-7 (2005).
    [52] M. Grouchko, A. Kamyshny and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem.19, 3057 (2009).
    [53] K. Woo, D. Kim, J.S. Kim, S. Lim and J. Moon, Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate, Langmuir, 25, 429 (2009).
    [54] W.B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon press; New York: 1967.
    [55] R. Hultgren, P.D. Desai, D.T. Hawkins, G. Gleiser and K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloy, Metals Park; Ohio: 1973.
    [56] V. Ozolins, C. Wolverton and A. Zunger, First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au, Phys. Rev. B, 57, 4332 (1998).
    [57] L. Pauling, The Nature of the Chemical Bond, 3rd ed. Cornell University Press; New York: 1960.
    [58] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. ASM International, Materials Park; OH: 1990.
    [59] 顏正偉,熱輔助光還原金屬奈米線於二氧化鈦薄膜表面之研究,國立成功大學材料科學及工程學學系碩士論文,民國97年。
    [60] B. E. Warren, X-ray Diffraction, Dover Publications, New York: 1969.
    [61] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181,100,民國91年。
    [62] D. Rickerby and A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie Academic & Professional, London, UK: 1991.
    [63] E. Hutter, J. H. Fendler, Exploitation of Localized Surface Plasmon Resonance, Adv. Mater. 16, 1685 (2004).
    [64] 國家同步輻射研究中心,www.nsrrc.org.tw/english/lightsource.aspx
    [65] A. C. Fisher-Cripps, Nanoindentation, 2nd edition, Springer-Verlag, New York: 2004.
    [66] S. Chaturvedi, J.A. Rodriguez, J. Harbek, Reaction of S2 with ZnO and Cu/ZnO Surfaces: Photoemission and Molecular Orbital Studies, J. Phys. Chem. B, 101, 10860 (1997).
    [67] L. Supriya and R.O. Claus, Colloidal Au/Linker Molecule Multilayer Films: Low-Temperature Thermal Coalescence and Resistance Changes, Chem. Mater., 17, 4325 (2005).
    [68] J. Luo, M. M. Maye, L. Han, N. Kariuki, V. W. Jones, Y. Lin, M. H. Engelhard and C.J. Zhong, Spectroscopic Characterizations of Molecularly-Linked Gold Nanoparticle Assemblies Upon Thermal Treatment, Langmuir, 20, 4254 (2004).
    [69] L. Rast, A. Stanishevsky, Aggregated nanoparticle structures prepared by thermal decomposition of poly(vinyl)-N-pyrrolidone /Ag nanoparticle composite films, Appl. Phys. Lett., 87, 223118 (2004).
    [70] 吳恆璽,新型高效能奈米金屬懸浮液之開發、製備與性質探討,國立中山大學化學系碩士論文,民國95年。
    [71] R.G. Wilson, F.A. Stevie and C.W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley, New York: 1989.
    [72] W. Vandervorst, H.E. Maes and R.F. De Keersmaecker, Secondary ion mass spectrometry: Depth profiling of shallow As implants in silicon and silicon dioxide, J. Appl. Phys., 56, 1425 (1984).
    [73] F. Ercolessi, W. Andreoni and E. Tosatti, Melting of small gold particles: Mechanism and size effects, Phys. Rev. Lett.66, 911 (1991).
    [74] S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath and L.H. Allen, Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Phys. Rev. Lett. 77, 99 (1996).
    [75] H. Jiang, K-s. Moon, H. Dong, F. Hua and C.P. Wong, Size-dependent melting properties of tin nanoparticles, Chem. Phys. Lett. 429, 492 (2006).
    [76] J. Chastain(editors), Handbook of X-ray Photoelectron Spectroscopy, Perkin–Elmer Corp., Minnesota: 1992.
    [77] C.C. Tyson, A. Bzowski, P. Kristof, M. Kuhn, R. Sammynaiken and T.K. Sham, Charge redistribution in Au-Ag alloys from a local perspective, Phys. Rev. B., 45, 8924 (1992).
    [78] M. Kuhn and T.K. Sham, Charge redistribution and electronic behavior in a series of Au-Cu alloys, Phys. Rev. B., 3, 1647 (1994).
    [79] J.C. Fuggle, F.U. Hillebrecht, P.A. Bennett and Z. Zołnierek, Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra, Phys. Rev. B., 27, 2179 (1982).
    [80] P. Steiner and S. Hufner, Core level binding energy shifts in Ni on Au and Au on Ni overlayers, Solid State Commun., 37, 279 (1981).
    [81] A.K. Santra, G.N. Subbanna and C.N.R. Rao, An investigation of bimetallic clusters by a combined use of electron microscopy and photoelectron spectroscopy: additive effects of alloying and cluster size on core-level binding energies, Surf. Sci., 317, 259 (1994).
    [82] F. Hartung and G. Schmitz, Interdiffusion and reaction of metals: The influence and relaxation of mismatch-induced stress, Phys. Rev. B, 64, 245418 (2001).
    [83] H. Reichert, A. Schöps, I.B. Ramsteiner, V.N. Bugaev, O. Shchyglo, A. Udyansky, H. Dosch, M. Asta, R. Drautz and V. Honkimäki, Competition between Order and Phase Separation in Au-Ni, Phys. Rev. Lett., 95, 235703 (2005).
    [84] Y. Vasquez, Z. Luo and R.E. Schaak, Low-Temperature Solution Synthesis of the Non-Equilibrium Ordered Intermetallic Compounds Au3Fe, Au3Co, and Au3Ni as Nanocrystals, J. Am. Chem. Soc., 130, 11866 (2008).
    [85] E. Robert, R. Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent, Boston: 1992.
    [86] T. Surholt, C. Minkwitz and Chr. Herzig, Nickel and selenium grain boundary solute and diffusion and segregation in silver, Acta Mater., 46, 1849 (1998).
    [87] A. Prince, D.S. Evans and G.V. Raynor, Phase Diagrams of Ternary Gold Alloy, 1st ed. Institute of Metals, Brookfield; VT: 1990.
    [88] A. Prince, Critical assessment of copper-gold-silver ternary system, Int. Mater. Rev., 33, 314 (1988).
    [89] T. Surholt, C. Minkwitz and Chr. Herzig, Ag grain boundary diffusion and segregation in Cu: Measurements in the types b and c diffusion regimes, Acta Mater., 49, 249 (2001).
    [90] A.M. James and M.P. Lord, Macmillan's Chemical and Physical Data. Macmillan; London: 1992.

    無法下載圖示 校內:2015-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE